-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathgra.py
151 lines (115 loc) · 5.54 KB
/
gra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
from ..utils import *
from ..attack import Attack
class GRA(Attack):
"""
GRA Attack
'Boosting Adversarial Transferability via Gradient Relevance Attack (ICCV 2023)'(https://openaccess.thecvf.com/content/ICCV2023/papers/Zhu_Boosting_Adversarial_Transferability_via_Gradient_Relevance_Attack_ICCV_2023_paper.pdf)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
beta (float): the upper bound factor of neighborhood.
num_neighbor (int): the number of samples for estimating the gradient variance.
epoch (int): the number of iterations.
decay (float): the decay factor for momentum calculation.
targeted (bool): targeted/untargeted attack.
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, beta=3.5, num_neighbor=20, epoch=10, decay=1.
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/gra/resnet18 --attack gra --model=resnet18
python main.py --input_dir ./path/to/data --output_dir adv_data/gra/resnet18 --eval
"""
def __init__(self, model_name, epsilon=16/255, alpha=1.6/255, beta=3.5, num_neighbor=20, epoch=10, decay=1., targeted=False,
random_start=False, norm='linfty', loss='crossentropy', device=None, attack='GRA', **kwargs):
super().__init__(attack, model_name, epsilon, targeted, random_start, norm, loss, device)
self.alpha = alpha
self.radius = beta * epsilon
self.epoch = epoch
self.decay = decay
self.num_neighbor = num_neighbor
def get_average_gradient(self, data, delta, label, momentum, **kwargs):
"""
Calculate the average gradient of the samples
"""
grad = 0
for _ in range(self.num_neighbor):
# Obtain the output
# This is inconsistent for transform!
logits = self.get_logits(self.transform(data+delta+torch.zeros_like(delta).uniform_(-self.radius, self.radius).to(self.device), momentum=momentum))
# Calculate the loss
loss = self.get_loss(logits, label)
# Calculate the gradients
grad += self.get_grad(loss, delta)
return grad / self.num_neighbor
def get_cosine_similarity(self, cur_grad, sam_grad, **kwargs):
"""
Calculate cosine similarity to find the score
"""
cur_grad = cur_grad.view(cur_grad.size(0), -1)
sam_grad = sam_grad.view(sam_grad.size(0), -1)
cos_sim = torch.sum(cur_grad * sam_grad, dim=1) / (
torch.sqrt(torch.sum(cur_grad ** 2, dim=1)) * torch.sqrt(torch.sum(sam_grad ** 2, dim=1)))
cos_sim = cos_sim.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
return cos_sim
def get_decay_indicator(self, M, delta, cur_noise, last_noise, eta, **kwargs):
"""
Define the decay indicator
"""
if isinstance(last_noise, int):
last_noise = torch.full(cur_noise.shape, last_noise)
else:
last_noise = last_noise
if torch.cuda.is_available():
last_noise = last_noise.cuda()
last = last_noise.sign()
cur = cur_noise.sign()
eq_m = (last == cur).float()
di_m = torch.ones_like(delta) - eq_m
M = M * (eq_m + di_m * eta)
return M
def forward(self, data, label, **kwargs):
"""
The attack procedure for GRA
Arguments:
data: (N, C, H, W) tensor for input images
labels: (N,) tensor for ground-truth labels if untargetd, otherwise targeted labels
"""
if self.targeted:
assert len(label) == 2
label = label[1] # the second element is the targeted label tensor
data = data.clone().detach().to(self.device)
label = label.clone().detach().to(self.device)
# Initialize adversarial perturbation
delta = self.init_delta(data)
# Initialize the attenuation factor for decay indicator
eta = 0.94
# Initialize the decay indicator
M = torch.full_like(delta, 1 / eta)
momentum = 0
for _ in range(self.epoch):
# Obtain the output
logits = self.get_logits(self.transform(data+delta, momentum=momentum))
# Calculate the loss
loss = self.get_loss(logits, label)
# Calculate the current gradients
grad = self.get_grad(loss, delta)
# Calculate the average gradients
samgrad = self.get_average_gradient(data, delta, label, momentum)
# Calculate the cosine similarity
s = self.get_cosine_similarity(grad, samgrad)
# Calculate the global weighted gradient
current_grad = s * grad + (1 - s) * samgrad
# Save the previous perturbation
last_momentum = momentum
# Calculate the momentum
momentum = self.get_momentum(current_grad, momentum)
# Update decay indicator
M = self.get_decay_indicator(M, delta, momentum, last_momentum, eta)
# Update adversarial perturbation
delta = self.update_delta(delta, data, momentum, M * self.alpha)
return delta.detach()