-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathfft.py
313 lines (263 loc) · 13 KB
/
fft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import torch
from ..utils import *
from ..attack import Attack
import torch.nn.functional as F
import scipy.stats as st
from torch.nn.modules.module import Module
mid_outputs = None
class FFT(Attack):
"""
FFT (Feature space fine-tuning)
'Enhancing Targeted Transferability via Feature Space Fine-tuning (ICASSP 2024)'(https://arxiv.org/abs/2401.02727)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
epoch (int): the number of iterations.
decay (float): the decay factor for momentum calculation.
coeff (float): coefficient.
targeted (bool): targeted/untargeted attack.
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
beta_combine: the constant to combine the AG of x_adv with the AG of x_ori.
epoch_ft: fine-tuning epochs
alpha_ft: fine-tuning step size
Official arguments:
epsilon=16/255, alpha=2.0/255, epoch=300(baseline attack) , decay=1., coeff=1.0
beta_combine=0.2, epoch_ft=10, alpha_ft = alpha/2
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/fft/resnet18_targeted --attack fft --model=resnet18 --targeted
python main.py --input_dir ./path/to/data --output_dir adv_data/fft/resnet18_targeted --eval --targeted
NOTE:
1). FFT is only useful for TARGETED attack. It does not make sense to try to boost untargeted attack with it.
2). About the middle layer to be attacked: the principle is the middle-to-end module. For a model with 4 blocks, the 3rd block is a good candidate.
"""
def __init__(self, model_name, epsilon=16 / 255, alpha=2.0 / 255, random=False, epoch=300, decay=1., coeff=1.0,
drop_rate=0.3, num_ens=30, beta_combine=0.2, epoch_ft=10, targeted=False, random_start=False, norm='linfty',
loss='crossentropy', device=None, attack='FFT', loss_base='logit_margin', **kwargs):
super().__init__(attack, model_name, epsilon, targeted, random_start, norm, loss, device)
self.alpha = alpha
self.epoch = epoch
self.decay = decay
self.random = random
self.coeff = coeff
self.model_name = model_name
self.num_ens = num_ens # ensemble number for AG, following FIA
self.drop_rate = drop_rate # 0.3, following FIA
self.beta_combine = beta_combine # following SupHigh method
self.alpha_ft = alpha / 2 # should < self.alpha
self.epoch_ft = epoch_ft # should << self.epoch
self.loss_base = loss_base # the loss function of the baseline attack, 202402
# define DI
def DI_keepresolution(self, X_in):
img_size = X_in.shape[-1]
rnd = np.random.randint(img_size - 22, img_size)
h_rem = img_size - rnd
w_rem = img_size - rnd
pad_top = np.random.randint(0, h_rem)
pad_bottom = h_rem - pad_top
pad_left = np.random.randint(0, w_rem)
pad_right = w_rem - pad_left
c = np.random.rand(1)
if c <= 0.7:
X_in_inter = F.interpolate(X_in, size=(rnd, rnd))
X_out = F.pad(X_in_inter, (pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0)
return X_out
else:
return X_in
# define TI
def gkern(self, kernlen=15, nsig=3):
x = np.linspace(-nsig, nsig, kernlen)
kern1d = st.norm.pdf(x)
kernel_raw = np.outer(kern1d, kern1d)
kernel = kernel_raw / kernel_raw.sum()
return kernel
# obtain gaussian_kernel
def get_Gaussian_kernel(self, kernel_size=5):
# kernel_size = 5
kernel = self.gkern(kernel_size, 3).astype(np.float32)
gaussian_kernel = np.stack([kernel, kernel, kernel])
gaussian_kernel = np.expand_dims(gaussian_kernel, 1)
gaussian_kernel = torch.from_numpy(gaussian_kernel).cuda()
return gaussian_kernel
# redefine the transform function
def transform(self, data, **kwargs):
return self.DI_keepresolution(data)
# redefine the get_grad function
def get_grad(self, loss, delta, **kwargs):
"""
Overridden for TIM attack.
"""
gaussian_kernel = self.get_Gaussian_kernel(kernel_size=5)
grad = torch.autograd.grad(loss, delta, retain_graph=False, create_graph=False)[0]
grad = F.conv2d(grad, gaussian_kernel, bias=None, stride=1, padding=(2, 2), groups=3) # TI
return grad
###### FIA related function
def __backward_hook(self, m, i, o):
global mid_grad
mid_grad = o
def drop(self, data):
x_drop = torch.zeros(data.size()).cuda()
x_drop.copy_(data).detach()
x_drop.requires_grad = True
Mask = torch.bernoulli(torch.ones_like(x_drop) * (1 - self.drop_rate))
x_drop = x_drop * Mask
return x_drop
####### FIA related function end
def forward(self, data, label, **kwargs):
"""
The general attack procedure
Arguments:
data: (N, C, H, W) tensor for input images
labels: (N,) tensor for ground-truth labels if untargetd, otherwise targeted labels
"""
# baseline attack. Literally, the power of fine-tuned AE is more depended on the baseline attack, rather
# than the fine-tuning scheme.
# How to set the loss function of base attack?
# attacker = transferattack.attack_zoo[args.attack.lower()](..., loss_base='logit_margin')
# 202402 modified
if self.loss_base == 'CE':
init_delta = super().forward(data, label, **kwargs)
elif self.loss_base == 'logit': # default
self.get_loss = LogitLoss()
init_delta = super().forward(data, label, **kwargs)
elif self.loss_base == 'logit_margin':
self.get_loss = Logit_marginLoss()
init_delta = super().forward(data, label, **kwargs)
else:
raise ValueError("Only support three types of loss functions now: CE, logit, logit_margin.")
if self.targeted:
assert len(label) == 2
label_ori = label[0]
label_tar = label[1] # the second element is the targeted label tensor
data = data.clone().detach().to(self.device)
label_ori = label_ori.clone().detach().to(self.device)
label_tar = label_tar.clone().detach().to(self.device)
# 1 Initialize adversarial perturbation
delta = self.init_delta(data)
### 2.1 Aggregate Gradient of X_ori
if self.model_name in ['resnet18', 'resnet50']:
"""res18, 50, the output of the 3rd Block (total 4)"""
h2 = self.model[1]._modules.get('layer3')[-1].register_full_backward_hook(self.__backward_hook)
elif self.model_name in ['densenet121']:
"""dense 121 the output of the 3rd denseBlock (total 4)"""
h2 = self.model[1]._modules.get('features')[7].register_full_backward_hook(self.__backward_hook)
elif self.model_name in ['inception_v3']:
"""incV3 'Mixed_6b'"""
h2 = self.model[1]._modules.get('Mixed_6b').register_full_backward_hook(self.__backward_hook)
elif self.model_name in ['vgg16_bn']:
"""vgg16_bn, the end of the 4th block (total 5)"""
h2 = self.model[1]._modules.get('features')[33].register_full_backward_hook(self.__backward_hook)
else:
raise ValueError("Please select the correct model! (e.g., resnet18, resnet50, densenet121, etc.)")
agg_grad = 0
for _ in range(self.num_ens):
# 202402 modified
img_temp_i = self.model[0](data).clone()
x_drop = self.drop(img_temp_i)
output_random = self.model[1](x_drop)
# get the logit of the corresponding label
logit_label = output_random.gather(1, label_ori.unsqueeze(1)).squeeze(1)
loss = logit_label.sum()
self.model.zero_grad()
loss.backward()
agg_grad += mid_grad[0].detach()
for batch_i in range(data.shape[0]):
agg_grad[batch_i] /= agg_grad[batch_i].norm(2)
h2.remove()
### 2.2 Aggregate Gradient of X_adv
if self.model_name in ['resnet18', 'resnet50']:
"""res18, 50, the output of the 3rd Block (total 4)"""
h2 = self.model[1]._modules.get('layer3')[-1].register_full_backward_hook(self.__backward_hook)
elif self.model_name in ['densenet121']:
"""dense 121 the output of the 3rd denseBlock (total 4)"""
h2 = self.model[1]._modules.get('features')[7].register_full_backward_hook(self.__backward_hook)
elif self.model_name in ['inception_v3']:
"""incV3 'Mixed_6b'"""
h2 = self.model[1]._modules.get('Mixed_6b').register_full_backward_hook(self.__backward_hook)
elif self.model_name in ['vgg16_bn']:
"""vgg16_bn, the end of the 4th block (total 5)"""
h2 = self.model[1]._modules.get('features')[33].register_full_backward_hook(self.__backward_hook)
else:
raise ValueError("Please select the correct model! (e.g., resnet18, resnet50, densenet121, etc.)")
agg_grad_adv = 0
for _ in range(self.num_ens):
# 202402 modified
img_temp_i = self.model[0](data + init_delta).clone()
x_drop = self.drop(img_temp_i)
output_random = self.model[1](x_drop)
# get the logit of the corresponding label
logit_label = output_random.gather(1, label_tar.unsqueeze(1)).squeeze(1)
loss = logit_label.sum()
self.model.zero_grad()
loss.backward()
agg_grad_adv += mid_grad[0].detach()
for batch_i in range(data.shape[0]):
agg_grad_adv[batch_i] /= agg_grad_adv[batch_i].norm(2)
h2.remove()
### 2.3 Combined AG, self.beta_combine should be smaller than 1.
agg_grad_combine = agg_grad_adv - self.beta_combine * agg_grad
### End of AG
global mid_outputs
hs = []
def get_mid_output(model_, input_, o):
global mid_outputs
mid_outputs = o
## 3 Fine-tune begin
if self.model_name in ['resnet18', 'resnet50']:
hs.append(self.model[1]._modules.get('layer3')[-1].register_forward_hook(get_mid_output)) # resnet
elif self.model_name in ['densenet121']:
hs.append(self.model[1]._modules.get('features')[7].register_forward_hook(get_mid_output)) # dense121
elif self.model_name in ['inception_v3']:
hs.append(self.model[1]._modules.get('Mixed_6b').register_forward_hook(get_mid_output)) # incV3
elif self.model_name in ['vgg16_bn']:
hs.append(self.model[1]._modules.get('features')[33].register_forward_hook(get_mid_output)) # vgg16_bn
else:
raise ValueError("Please select the correct model! (e.g., resnet18, resnet50, densenet121, etc.)")
data_adv = data + init_delta
momentum = 0
for _ in range(self.epoch_ft):
# Obtain the output
logits = self.get_logits(self.transform(data_adv + delta)) # DI
# Calculate the loss
loss = torch.sum(agg_grad_combine * mid_outputs) # FIA loss
# Calculate the gradients
grad = self.get_grad(loss, delta)
# Calculate the momentum
momentum = self.get_momentum(grad, momentum)
# Update adversarial perturbation
# Note, the overall perturbation (not only delta) should be bounded, ZH
delta = torch.clamp(init_delta + delta + self.alpha_ft * momentum.sign(), -self.epsilon,
self.epsilon) - init_delta
delta = clamp(delta, img_min - data_adv, img_max - data_adv)
mid_outputs = []
for h in hs:
h.remove()
## 3 Fine-tune end
return (init_delta + delta).detach()
# when you need compare the AE w/ and w/o fine-tuning
# return (init_delta + delta).detach(), init_delta.detach()
# Advanced, targeted attack-tailored loss functions
class LogitLoss(Module):
"""
targeted logit loss
"""
def __init__(self):
super(LogitLoss, self).__init__()
def forward(self, logits, label):
logit_tar = logits.gather(1, label.unsqueeze(1)).squeeze(1)
loss = logit_tar.sum()
return loss
class Logit_marginLoss(Module):
"""
targeted margin-calibrated loss
"""
def __init__(self):
super(Logit_marginLoss, self).__init__()
def forward(self, logits, label):
value, _ = torch.sort(logits, dim=1, descending=True)
logits = logits / torch.unsqueeze(value[:, 0] - value[:, 1], 1).detach() # margin-calibrated loss
loss = torch.nn.CrossEntropyLoss(reduction='sum')(logits, label)
return -loss