-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinquiry.py
225 lines (191 loc) · 6.7 KB
/
inquiry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# The code is built on top of the codebase of the paper "Calibrate Before Use: Improving Fewshot Performance of Language Models" https://github.com/tonyzhaozh/few-shot-learning
import argparse
from datetime import datetime
import numpy as np
import pickle
import random
from copy import deepcopy
from utils import (
load_dataset,
random_sampling,
retrieve_model,
seen_before_from_model,
)
def main(models, datasets, num_seeds, positions, all_shots):
"""
Run experiment or load past results, print accuracy
"""
default_params = {
"conditioned_on_correct_classes": True,
}
current_date = datetime.now().strftime('%Y-%m-%d')
# list of all experiment parameters to run
all_params = []
for model in models:
for dataset in datasets:
for position in positions:
for num_shots in all_shots:
for seed in range(num_seeds):
p = deepcopy(default_params)
p["model"] = model
p["dataset"] = dataset
p["seed"] = seed
p["num_shots"] = num_shots
p['position'] = position
# p['repeats'] = repeats
p[
"expr_name"
] = f"{p['dataset']}_{p['model']}_subsample_seed{p['seed']}"
all_params.append(p)
for param_index, params in enumerate(all_params):
train_sentences, train_labels, test_sentences, test_labels = prepare_data(
params
)
print(params)
global llm_model
global llm_tokenizer
llm_model, llm_tokenizer = retrieve_model(params)
all_member_list = []
all_nonmember_list = []
test_data = list(zip(test_sentences, test_labels))
# create your prompt
demo_sentences = []
demo_labels = []
# for example
random_prepend = random.sample(test_data, params['num_shots'])
for i in range(len(random_prepend)):
demo_sentences.append(random_prepend[i][0])
demo_labels.append(random_prepend[i][1])
# based on the position
if params['position'] == 'end':
member_sentence = demo_sentences[-1]
member_label = demo_labels[-1]
elif params['position'] == 'begin':
member_sentence = demo_sentences[0]
member_label = demo_labels[0]
# set nonmember_sentence and nonmember_label
nonmember_sentences = SET_WITH_NO_OVERLAP
nonmember_labels = SET_WITH_NO_OVERLAP
required_for_mem = inquiry(
params,
demo_sentences,
demo_labels,
member_sentence,
member_label,
)
if required_for_mem == None:
continue
required_for_nonmem = inquiry(
params,
demo_sentences,
demo_labels,
nonmember_sentences,
nonmember_labels,
)
if required_for_nonmem == None:
continue
all_member_list.append(required_for_mem)
all_nonmember_list.append(required_for_nonmem)
with open(
MEM_SAVE_PATH,
"wb",
) as file:
pickle.dump(all_member_list, file)
with open(
NONMEM_SAVE_PATH,
"wb",
) as file:
pickle.dump(all_nonmember_list, file)
def prepare_data(params):
print("\nExperiment name:", params["expr_name"])
(
all_train_sentences,
all_train_labels,
all_test_sentences,
all_test_labels,
) = load_dataset(params)
np.random.seed(params["seed"])
test_sentences, test_labels = random_sampling(
all_test_sentences, all_test_labels, 500
)
train_sentences, train_labels = random_sampling(
all_train_sentences, all_train_labels, 500
)
return train_sentences, train_labels, test_sentences, test_labels
def inquiry(params, train_sentences, train_labels, test_sentence, test_label):
query_sentence = "Have you seen this sentence before: " + test_sentence
input_to_model = construct_prompt_omit(
params, train_sentences, train_labels, query_sentence
)
return_idx = seen_before_from_model(
params, input_to_model, llm_model, llm_tokenizer
)
return return_idx
def construct_prompt_omit(params, train_sentences, train_labels, test_sentence):
if ('prompt_func' in params.keys()) and (params['prompt_func'] is not None):
return params['prompt_func'](params, train_sentences, train_labels, test_sentence)
prompt = params["prompt_prefix"]
q_prefix = params["q_prefix"]
a_prefix = params["a_prefix"]
for s, l in zip(train_sentences, train_labels):
prompt += q_prefix
prompt += s + "\n"
if isinstance(l, int) or isinstance(l, np.int32) or isinstance(l, np.int64): # integer labels for classification
assert params['task_format'] == 'classification'
l_str = params["label_dict"][l][0] if isinstance(params["label_dict"][l], list) else params["label_dict"][l]
prompt += a_prefix
prompt += l_str + "\n\n"
prompt += test_sentence
return prompt
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# required arguments
parser.add_argument(
"--models",
dest="models",
action="store",
required=True,
help="name of model(s), e.g., GPT2-XL",
)
parser.add_argument(
"--datasets",
dest="datasets",
action="store",
required=True,
help="name of dataset(s), e.g., agnews",
)
parser.add_argument(
"--num_seeds",
dest="num_seeds",
action="store",
required=True,
help="num seeds for the training set",
type=int,
)
parser.add_argument(
"--all_shots",
dest="all_shots",
action="store",
required=True,
help="num training examples to use",
)
parser.add_argument(
"--positions",
dest="positions",
action="store",
required=True,
help="the position of the target demo, e.g. begin or end.",
)
args = parser.parse_args()
args = vars(args)
print(args)
def convert_to_list(items, is_int=False):
if is_int:
return [int(s.strip()) for s in items.split(",")]
else:
return [s.strip() for s in items.split(",")]
args["models"] = convert_to_list(args["models"])
args["datasets"] = convert_to_list(args["datasets"])
args["positions"] = convert_to_list(args["positions"])
args["all_shots"] = convert_to_list(args["all_shots"], is_int=True)
main(**args)