Edit hparams.yaml to configure your conda environment and slurm job details. hparams.yaml right now will save experiment details to ./test_shopty/, optimize for the minimum result, and run the simple training script in ./train.py.
Change run_command
in hparams.yaml if you want to see the neural network example in action.
Be sure to modify the slurm directives so you run your experiments on a GPU (if you're on a cluster,
which you probably should be.)
shopty hyperband --config_file hparams.yaml --supervisor cpu
shopty hyperband --config_file hparams.yaml --supervisor slurm
shopty hyperband --config_file hparams.yaml --supervisor slurm -n 20
shopty random --config_file hparams.yaml --supervisor cpu --max_iter 100 --n_experiments 20
shopty random --config_file hparams.yaml --supervisor slurm --max_iter 100 --n_experiments 20