forked from math-comp/math-comp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fingraph.v
1021 lines (801 loc) · 37 KB
/
fingraph.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat.
From mathcomp Require Import seq path fintype.
(******************************************************************************)
(* This file develops the theory of finite graphs represented by an "edge" *)
(* relation over a finType T; this mainly amounts to the theory of the *)
(* transitive closure of such relations. *)
(* For g : T -> seq T, e : rel T and f : T -> T we define: *)
(* grel g == the adjacency relation y \in g x of the graph g. *)
(* rgraph e == the graph (x |-> enum (e x)) of the relation e. *)
(* dfs g n v x == the list of points traversed by a depth-first search of *)
(* the g, at depth n, starting from x, and avoiding v. *)
(* dfs_path g v x y <-> there is a path from x to y in g \ v. *)
(* connect e == the reflexive transitive closure of e (computed by dfs). *)
(* connect_sym e <-> connect e is symmetric, hence an equivalence relation. *)
(* root e x == a representative of connect e x, which is the component *)
(* of x in the transitive closure of e. *)
(* roots e == the codomain predicate of root e. *)
(* n_comp e a == the number of e-connected components of a, when a is *)
(* e-closed and connect e is symmetric. *)
(* equivalence classes of connect e if connect_sym e holds. *)
(* closed e a == the collective predicate a is e-invariant. *)
(* closure e a == the e-closure of a (the image of a under connect e). *)
(* rel_adjunction h e e' a <-> in the e-closed domain a, h is the left part *)
(* of an adjunction from e to another relation e'. *)
(* fconnect f == connect (frel f), i.e., "connected under f iteration". *)
(* froot f x == root (frel f) x, the root of the orbit of x under f. *)
(* froots f == roots (frel f) == orbit representatives for f. *)
(* orbit f x == lists the f-orbit of x. *)
(* findex f x y == index of y in the f-orbit of x. *)
(* order f x == size (cardinal) of the f-orbit of x. *)
(* order_set f n == elements of f-order n. *)
(* finv f == the inverse of f, if f is injective. *)
(* := finv f x := iter (order x).-1 f x. *)
(* fcard f a == number of orbits of f in a, provided a is f-invariant *)
(* f is one-to-one. *)
(* fclosed f a == the collective predicate a is f-invariant. *)
(* fclosure f a == the closure of a under f iteration. *)
(* fun_adjunction == rel_adjunction (frel f). *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Definition grel (T : eqType) (g : T -> seq T) := [rel x y | y \in g x].
(* Decidable connectivity in finite types. *)
Section Connect.
Variable T : finType.
Section Dfs.
Variable g : T -> seq T.
Implicit Type v w a : seq T.
Fixpoint dfs n v x :=
if x \in v then v else
if n is n'.+1 then foldl (dfs n') (x :: v) (g x) else v.
Lemma subset_dfs n v a : v \subset foldl (dfs n) v a.
Proof.
elim: n a v => [|n IHn]; first by elim=> //= *; rewrite if_same.
elim=> //= x a IHa v; apply: subset_trans {IHa}(IHa _); case: ifP => // _.
by apply: subset_trans (IHn _ _); apply/subsetP=> y; apply: predU1r.
Qed.
Inductive dfs_path v x y : Prop :=
DfsPath p of path (grel g) x p & y = last x p & [disjoint x :: p & v].
Lemma dfs_pathP n x y v :
#|T| <= #|v| + n -> y \notin v -> reflect (dfs_path v x y) (y \in dfs n v x).
Proof.
have dfs_id w z: z \notin w -> dfs_path w z z.
by exists [::]; rewrite ?disjoint_has //= orbF.
elim: n => [|n IHn] /= in x y v * => le_v'_n not_vy.
rewrite addn0 (geq_leqif (subset_leqif_card (subset_predT _))) in le_v'_n.
by rewrite predT_subset in not_vy.
have [v_x | not_vx] := ifPn.
by rewrite (negPf not_vy); right=> [] [p _ _]; rewrite disjoint_has /= v_x.
set v1 := x :: v; set a := g x; have sub_dfs := subsetP (subset_dfs n _ _).
have [-> | neq_yx] := eqVneq y x.
by rewrite sub_dfs ?mem_head //; left; apply: dfs_id.
apply: (@equivP (exists2 x1, x1 \in a & dfs_path v1 x1 y)); last first.
split=> {IHn} [[x1 a_x1 [p g_p p_y]] | [p /shortenP[]]].
rewrite disjoint_has has_sym /= has_sym /= => /norP[_ not_pv].
by exists (x1 :: p); rewrite /= ?a_x1 // disjoint_has negb_or not_vx.
case=> [_ _ _ eq_yx | x1 p1 /=]; first by case/eqP: neq_yx.
case/andP=> a_x1 g_p1 /andP[not_p1x _] /subsetP p_p1 p1y not_pv.
exists x1 => //; exists p1 => //.
rewrite disjoint_sym disjoint_cons not_p1x disjoint_sym.
by move: not_pv; rewrite disjoint_cons => /andP[_ /disjointWl->].
have{neq_yx not_vy}: y \notin v1 by apply/norP.
have{le_v'_n not_vx}: #|T| <= #|v1| + n by rewrite cardU1 not_vx addSnnS.
elim: {x v}a v1 => [|x a IHa] v /= le_v'_n not_vy.
by rewrite (negPf not_vy); right=> [] [].
set v2 := dfs n v x; have v2v: v \subset v2 := subset_dfs n v [:: x].
have [v2y | not_v2y] := boolP (y \in v2).
by rewrite sub_dfs //; left; exists x; [apply: mem_head | apply: IHn].
apply: {IHa}(equivP (IHa _ _ not_v2y)).
by rewrite (leq_trans le_v'_n) // leq_add2r subset_leq_card.
split=> [] [x1 a_x1 [p g_p p_y not_pv]].
exists x1; [exact: predU1r | exists p => //].
by rewrite disjoint_sym (disjointWl v2v) // disjoint_sym.
suffices not_p1v2: [disjoint x1 :: p & v2].
case/predU1P: a_x1 => [def_x1 | ]; last by exists x1; last exists p.
case/pred0Pn: not_p1v2; exists x; rewrite /= def_x1 mem_head /=.
suffices not_vx: x \notin v by apply/IHn; last apply: dfs_id.
by move: not_pv; rewrite disjoint_cons def_x1 => /andP[].
apply: contraR not_v2y => /pred0Pn[x2 /andP[/= p_x2 v2x2]].
case/splitPl: p_x2 p_y g_p not_pv => p0 p2 p0x2.
rewrite last_cat cat_path -cat_cons lastI cat_rcons {}p0x2 => p2y /andP[_ g_p2].
rewrite disjoint_cat disjoint_cons => /and3P[{p0}_ not_vx2 not_p2v].
have{not_vx2 v2x2} [p1 g_p1 p1_x2 not_p1v] := IHn _ _ v le_v'_n not_vx2 v2x2.
apply/IHn=> //; exists (p1 ++ p2); rewrite ?cat_path ?last_cat -?p1_x2 ?g_p1 //.
by rewrite -cat_cons disjoint_cat not_p1v.
Qed.
Lemma dfsP x y :
reflect (exists2 p, path (grel g) x p & y = last x p) (y \in dfs #|T| [::] x).
Proof.
apply: (iffP (dfs_pathP _ _ _)); rewrite ?card0 // => [] [p]; exists p => //.
by rewrite disjoint_sym disjoint0.
Qed.
End Dfs.
Variable e : rel T.
Definition rgraph x := enum (e x).
Lemma rgraphK : grel rgraph =2 e.
Proof. by move=> x y; rewrite /= mem_enum. Qed.
Definition connect : rel T := [rel x y | y \in dfs rgraph #|T| [::] x].
Canonical connect_app_pred x := ApplicativePred (connect x).
Lemma connectP x y :
reflect (exists2 p, path e x p & y = last x p) (connect x y).
Proof.
apply: (equivP (dfsP _ x y)).
by split=> [] [p e_p ->]; exists p => //; rewrite (eq_path rgraphK) in e_p *.
Qed.
Lemma connect_trans : transitive connect.
Proof.
move=> x y z /connectP[p e_p ->] /connectP[q e_q ->]; apply/connectP.
by exists (p ++ q); rewrite ?cat_path ?e_p ?last_cat.
Qed.
Lemma connect0 x : connect x x.
Proof. by apply/connectP; exists [::]. Qed.
Lemma eq_connect0 x y : x = y -> connect x y.
Proof. by move->; apply: connect0. Qed.
Lemma connect1 x y : e x y -> connect x y.
Proof. by move=> e_xy; apply/connectP; exists [:: y]; rewrite /= ?e_xy. Qed.
Lemma path_connect x p : path e x p -> subpred [in x :: p] (connect x).
Proof.
move=> e_p y p_y; case/splitPl: p / p_y e_p => p q <-.
by rewrite cat_path => /andP[e_p _]; apply/connectP; exists p.
Qed.
Lemma connect_cycle p : cycle e p -> {in p &, forall x y, connect x y}.
Proof.
move=> e_p x y /rot_to[i q rip]; rewrite -(mem_rot i) rip => yqx.
have /= : cycle e (x :: q) by rewrite -rip rot_cycle.
case/splitPl: yqx => r s lxr; rewrite rcons_cat cat_path => /andP[xr _].
by apply/connectP; exists r.
Qed.
Definition root x := odflt x (pick (connect x)).
Definition roots : pred T := fun x => root x == x.
Canonical roots_pred := ApplicativePred roots.
Definition n_comp_mem (m_a : mem_pred T) := #|predI roots m_a|.
Lemma connect_root x : connect x (root x).
Proof. by rewrite /root; case: pickP; rewrite ?connect0. Qed.
Definition connect_sym := symmetric connect.
Hypothesis sym_e : connect_sym.
Lemma same_connect : left_transitive connect.
Proof. exact: sym_left_transitive connect_trans. Qed.
Lemma same_connect_r : right_transitive connect.
Proof. exact: sym_right_transitive connect_trans. Qed.
Lemma same_connect1 x y : e x y -> connect x =1 connect y.
Proof. by move/connect1; apply: same_connect. Qed.
Lemma same_connect1r x y : e x y -> connect^~ x =1 connect^~ y.
Proof. by move/connect1; apply: same_connect_r. Qed.
Lemma rootP x y : reflect (root x = root y) (connect x y).
Proof.
apply: (iffP idP) => e_xy.
by rewrite /root -(eq_pick (same_connect e_xy)); case: pickP e_xy => // ->.
by apply: (connect_trans (connect_root x)); rewrite e_xy sym_e connect_root.
Qed.
Lemma root_root x : root (root x) = root x.
Proof. exact/esym/rootP/connect_root. Qed.
Lemma roots_root x : roots (root x).
Proof. exact/eqP/root_root. Qed.
Lemma root_connect x y : (root x == root y) = connect x y.
Proof. exact: sameP eqP (rootP x y). Qed.
Definition closed_mem m_a := forall x y, e x y -> in_mem x m_a = in_mem y m_a.
Definition closure_mem m_a : pred T :=
fun x => ~~ disjoint (mem (connect x)) m_a.
End Connect.
#[global] Hint Resolve connect0 : core.
Notation n_comp e a := (n_comp_mem e (mem a)).
Notation closed e a := (closed_mem e (mem a)).
Notation closure e a := (closure_mem e (mem a)).
Prenex Implicits connect root roots.
Arguments dfsP {T g x y}.
Arguments connectP {T e x y}.
Arguments rootP [T e] _ {x y}.
Notation fconnect f := (connect (coerced_frel f)).
Notation froot f := (root (coerced_frel f)).
Notation froots f := (roots (coerced_frel f)).
Notation fcard_mem f := (n_comp_mem (coerced_frel f)).
Notation fcard f a := (fcard_mem f (mem a)).
Notation fclosed f a := (closed (coerced_frel f) a).
Notation fclosure f a := (closure (coerced_frel f) a).
Section EqConnect.
Variable T : finType.
Implicit Types (e : rel T) (a : {pred T}).
Lemma connect_sub e e' :
subrel e (connect e') -> subrel (connect e) (connect e').
Proof.
move=> e'e x _ /connectP[p e_p ->]; elim: p x e_p => //= y p IHp x /andP[exy].
by move/IHp; apply: connect_trans; apply: e'e.
Qed.
Lemma relU_sym e e' :
connect_sym e -> connect_sym e' -> connect_sym (relU e e').
Proof.
move=> sym_e sym_e'; apply: symmetric_from_pre => x _ /connectP[p e_p ->].
elim: p x e_p => //= y p IHp x /andP[e_xy /IHp{IHp}/connect_trans]; apply.
case/orP: e_xy => /connect1; rewrite (sym_e, sym_e');
by apply: connect_sub y x => x y e_xy; rewrite connect1 //= e_xy ?orbT.
Qed.
Lemma eq_connect e e' : e =2 e' -> connect e =2 connect e'.
Proof.
move=> eq_e x y; apply/connectP/connectP=> [] [p e_p ->];
by exists p; rewrite // (eq_path eq_e) in e_p *.
Qed.
Lemma eq_n_comp e e' : connect e =2 connect e' -> n_comp_mem e =1 n_comp_mem e'.
Proof.
move=> eq_e [a]; apply: eq_card => x /=.
by rewrite !inE /= /roots /root /= (eq_pick (eq_e x)).
Qed.
Lemma eq_n_comp_r {e} a a' : a =i a' -> n_comp e a = n_comp e a'.
Proof. by move=> eq_a; apply: eq_card => x; rewrite inE /= eq_a. Qed.
Lemma n_compC a e : n_comp e T = n_comp e a + n_comp e [predC a].
Proof.
rewrite /n_comp_mem (eq_card (fun _ => andbT _)) -(cardID a); congr (_ + _).
by apply: eq_card => x; rewrite !inE andbC.
Qed.
Lemma eq_root e e' : e =2 e' -> root e =1 root e'.
Proof. by move=> eq_e x; rewrite /root (eq_pick (eq_connect eq_e x)). Qed.
Lemma eq_roots e e' : e =2 e' -> roots e =1 roots e'.
Proof. by move=> eq_e x; rewrite /roots (eq_root eq_e). Qed.
Lemma connect_rev e : connect [rel x y | e y x] =2 [rel x y | connect e y x].
Proof.
suff crev e': subrel (connect [rel x y | e' y x]) [rel x y | connect e' y x].
by move=> x y; apply/idP/idP; apply: crev.
move=> x y /connectP[p e_p p_y]; apply/connectP.
exists (rev (belast x p)); first by rewrite p_y rev_path.
by rewrite -(last_cons x) -rev_rcons p_y -lastI rev_cons last_rcons.
Qed.
Lemma sym_connect_sym e : symmetric e -> connect_sym e.
Proof. by move=> sym_e x y; rewrite (eq_connect sym_e) connect_rev. Qed.
End EqConnect.
Section Closure.
Variables (T : finType) (e : rel T).
Hypothesis sym_e : connect_sym e.
Implicit Type a : {pred T}.
Lemma same_connect_rev : connect e =2 connect [rel x y | e y x].
Proof. by move=> x y; rewrite sym_e connect_rev. Qed.
Lemma intro_closed a : (forall x y, e x y -> x \in a -> y \in a) -> closed e a.
Proof.
move=> cl_a x y e_xy; apply/idP/idP=> [|a_y]; first exact: cl_a.
have{x e_xy} /connectP[p e_p ->]: connect e y x by rewrite sym_e connect1.
by elim: p y a_y e_p => //= y p IHp x a_x /andP[/cl_a/(_ a_x)]; apply: IHp.
Qed.
Lemma closed_connect a :
closed e a -> forall x y, connect e x y -> (x \in a) = (y \in a).
Proof.
move=> cl_a x _ /connectP[p e_p ->].
by elim: p x e_p => //= y p IHp x /andP[/cl_a->]; apply: IHp.
Qed.
Lemma connect_closed x : closed e (connect e x).
Proof. by move=> y z /connect1/same_connect_r; apply. Qed.
Lemma predC_closed a : closed e a -> closed e [predC a].
Proof. by move=> cl_a x y /cl_a /[!inE] ->. Qed.
Lemma closure_closed a : closed e (closure e a).
Proof.
apply: intro_closed => x y /connect1 e_xy; congr (~~ _).
by apply: eq_disjoint; apply: same_connect.
Qed.
Lemma mem_closure a : {subset a <= closure e a}.
Proof. by move=> x a_x; apply/existsP; exists x; rewrite !inE connect0. Qed.
Lemma subset_closure a : a \subset closure e a.
Proof. by apply/subsetP; apply: mem_closure. Qed.
Lemma n_comp_closure2 x y :
n_comp e (closure e (pred2 x y)) = (~~ connect e x y).+1.
Proof.
rewrite -(root_connect sym_e) -card2; apply: eq_card => z.
apply/idP/idP=> [/andP[/eqP {2}<- /pred0Pn[t /andP[/= ezt exyt]]] |].
by case/pred2P: exyt => <-; rewrite (rootP sym_e ezt) !inE eqxx ?orbT.
by case/pred2P=> ->; rewrite !inE roots_root //; apply/existsP;
[exists x | exists y]; rewrite !inE eqxx ?orbT sym_e connect_root.
Qed.
Lemma n_comp_connect x : n_comp e (connect e x) = 1.
Proof.
rewrite -(card1 (root e x)); apply: eq_card => y.
apply/andP/eqP => [[/eqP r_y /rootP-> //] | ->] /=.
by rewrite inE connect_root roots_root.
Qed.
End Closure.
Section Orbit.
Variables (T : finType) (f : T -> T).
Definition order x := #|fconnect f x|.
Definition orbit x := traject f x (order x).
Definition findex x y := index y (orbit x).
Definition finv x := iter (order x).-1 f x.
Lemma fconnect_iter n x : fconnect f x (iter n f x).
Proof.
apply/connectP.
by exists (traject f (f x) n); [apply: fpath_traject | rewrite last_traject].
Qed.
Lemma fconnect1 x : fconnect f x (f x).
Proof. exact: (fconnect_iter 1). Qed.
Lemma fconnect_finv x : fconnect f x (finv x).
Proof. exact: fconnect_iter. Qed.
Lemma orderSpred x : (order x).-1.+1 = order x.
Proof. by rewrite /order (cardD1 x) [_ x _]connect0. Qed.
Lemma size_orbit x : size (orbit x) = order x.
Proof. exact: size_traject. Qed.
Lemma looping_order x : looping f x (order x).
Proof.
apply: contraFT (ltnn (order x)); rewrite -looping_uniq => /card_uniqP.
rewrite size_traject => <-; apply: subset_leq_card.
by apply/subsetP=> _ /trajectP[i _ ->]; apply: fconnect_iter.
Qed.
Lemma fconnect_orbit x y : fconnect f x y = (y \in orbit x).
Proof.
apply/idP/idP=> [/connectP[_ /fpathP[m ->] ->] | /trajectP[i _ ->]].
by rewrite last_traject; apply/loopingP/looping_order.
exact: fconnect_iter.
Qed.
Lemma in_orbit x : x \in orbit x. Proof. by rewrite -fconnect_orbit. Qed.
Hint Resolve in_orbit : core.
Lemma order_gt0 x : order x > 0. Proof. by rewrite -orderSpred. Qed.
Hint Resolve order_gt0 : core.
Lemma orbit_uniq x : uniq (orbit x).
Proof.
rewrite /orbit -orderSpred looping_uniq; set n := (order x).-1.
apply: contraFN (ltnn n) => /trajectP[i lt_i_n eq_fnx_fix].
rewrite orderSpred -(size_traject f x n).
apply: (leq_trans (subset_leq_card _) (card_size _)); apply/subsetP=> z.
rewrite inE fconnect_orbit => /trajectP[j le_jn ->{z}].
rewrite -orderSpred -/n ltnS leq_eqVlt in le_jn.
by apply/trajectP; case/predU1P: le_jn => [->|]; [exists i | exists j].
Qed.
Lemma findex_max x y : fconnect f x y -> findex x y < order x.
Proof. by rewrite [_ y]fconnect_orbit -index_mem size_orbit. Qed.
Lemma findex_iter x i : i < order x -> findex x (iter i f x) = i.
Proof.
move=> lt_ix; rewrite -(nth_traject f lt_ix) /findex index_uniq ?orbit_uniq //.
by rewrite size_orbit.
Qed.
Lemma iter_findex x y : fconnect f x y -> iter (findex x y) f x = y.
Proof.
rewrite [_ y]fconnect_orbit => fxy; pose i := index y (orbit x).
have lt_ix: i < order x by rewrite -size_orbit index_mem.
by rewrite -(nth_traject f lt_ix) nth_index.
Qed.
Lemma findex0 x : findex x x = 0.
Proof. by rewrite /findex /orbit -orderSpred /= eqxx. Qed.
Lemma findex_eq0 x y : (findex x y == 0) = (x == y).
Proof. by rewrite /findex /orbit -orderSpred /=; case: (x == y). Qed.
Lemma fconnect_invariant (T' : eqType) (k : T -> T') :
invariant f k =1 xpredT -> forall x y, fconnect f x y -> k x = k y.
Proof.
move=> eq_k_f x y /iter_findex <-; elim: {y}(findex x y) => //= n ->.
by rewrite (eqP (eq_k_f _)).
Qed.
Lemma mem_orbit x : {homo f : y / y \in orbit x}.
Proof.
by move=> y; rewrite -!fconnect_orbit => /connect_trans->//; apply: fconnect1.
Qed.
Lemma image_orbit x : {subset image f (orbit x) <= orbit x}.
Proof.
by move=> _ /mapP[y yin ->]; apply: mem_orbit; rewrite ?mem_enum in yin.
Qed.
Section orbit_in.
Variable S : {pred T}.
Hypothesis f_in : {homo f : x / x \in S}.
Hypothesis injf : {in S &, injective f}.
Lemma finv_in : {homo finv : x / x \in S}.
Proof. by move=> x xS; rewrite iter_in. Qed.
Lemma f_finv_in : {in S, cancel finv f}.
Proof.
move=> x xS; move: (looping_order x) (orbit_uniq x).
rewrite /looping /orbit -orderSpred looping_uniq /= /looping; set n := _.-1.
case/predU1P=> // /trajectP[i lt_i_n]; rewrite -iterSr.
by move=> /injf ->; rewrite ?(iter_in _ f_in) //; case/trajectP; exists i.
Qed.
Lemma finv_f_in : {in S, cancel f finv}.
Proof. by move=> x xS; apply/injf; rewrite ?iter_in ?f_finv_in ?f_in. Qed.
Lemma finv_inj_in : {in S &, injective finv}.
Proof. by move=> x y xS yS q; rewrite -(f_finv_in xS) q f_finv_in. Qed.
Lemma fconnect_sym_in : {in S &, forall x y, fconnect f x y = fconnect f y x}.
Proof.
suff Sf : {in S &, forall x y, fconnect f x y -> fconnect f y x}.
by move=> *; apply/idP/idP=> /Sf->.
move=> x _ xS _ /connectP [p f_p ->]; elim: p => //= y p IHp in x xS f_p *.
case/andP: f_p => /eqP <- /(IHp _ (f_in xS)) /connect_trans -> //.
by apply: (connect_trans (fconnect_finv _)); rewrite finv_f_in.
Qed.
Lemma iter_order_in : {in S, forall x, iter (order x) f x = x}.
Proof. by move=> x xS; rewrite -orderSpred iterS; apply: f_finv_in. Qed.
Lemma iter_finv_in n :
{in S, forall x, n <= order x -> iter n finv x = iter (order x - n) f x}.
Proof.
move=> x xS; rewrite -[x in LHS]iter_order_in => // /subnKC {1}<-.
move: (_ - n) => m; rewrite iterD; elim: n => // n {2}<-.
by rewrite iterSr /= finv_f_in // -iterD iter_in.
Qed.
Lemma cycle_orbit_in : {in S, forall x, (fcycle f) (orbit x)}.
Proof.
move=> x xS; rewrite /orbit -orderSpred (cycle_path x) /= last_traject.
by rewrite -/(finv x) fpath_traject f_finv_in ?eqxx.
Qed.
Lemma fpath_finv_in p x :
(x \in S) && (fpath finv x p) =
(last x p \in S) && (fpath f (last x p) (rev (belast x p))).
Proof.
elim: p x => //= y p IHp x; rewrite rev_cons rcons_path.
transitivity [&& y \in S, f y == x & fpath finv y p].
apply/and3P/and3P => -[xS /eqP<- fxp]; split;
by rewrite ?f_finv_in ?finv_f_in ?finv_in ?f_in.
rewrite andbCA {}IHp !andbA [RHS]andbC -andbA; congr [&& _, _ & _].
by case: p => //= z p; rewrite rev_cons last_rcons.
Qed.
Lemma fpath_finv_f_in p : {in S, forall x,
fpath finv x p -> fpath f (last x p) (rev (belast x p))}.
Proof. by move=> x xS /(conj xS)/andP; rewrite fpath_finv_in => /andP[]. Qed.
Lemma fpath_f_finv_in p x : last x p \in S ->
fpath f (last x p) (rev (belast x p)) -> fpath finv x p.
Proof. by move=> lS /(conj lS)/andP; rewrite -fpath_finv_in => /andP[]. Qed.
End orbit_in.
Lemma injectivePcycle x :
reflect {in orbit x &, injective f} (fcycle f (orbit x)).
Proof.
apply: (iffP idP) => [/inj_cycle//|/cycle_orbit_in].
by apply; [apply: mem_orbit|apply: in_orbit].
Qed.
Section orbit_inj.
Hypothesis injf : injective f.
Lemma f_finv : cancel finv f. Proof. exact: (in1T (f_finv_in _ (in2W _))). Qed.
Lemma finv_f : cancel f finv. Proof. exact: (in1T (finv_f_in _ (in2W _))). Qed.
Lemma finv_bij : bijective finv.
Proof. by exists f; [apply: f_finv|apply: finv_f]. Qed.
Lemma finv_inj : injective finv. Proof. exact: (can_inj f_finv). Qed.
Lemma fconnect_sym x y : fconnect f x y = fconnect f y x.
Proof. exact: (in2T (fconnect_sym_in _ (in2W _))). Qed.
Let symf := fconnect_sym.
Lemma iter_order x : iter (order x) f x = x.
Proof. exact: (in1T (iter_order_in _ (in2W _))). Qed.
Lemma iter_finv n x : n <= order x -> iter n finv x = iter (order x - n) f x.
Proof. exact: (in1T (@iter_finv_in _ _ (in2W _) _)). Qed.
Lemma cycle_orbit x : fcycle f (orbit x).
Proof. exact: (in1T (cycle_orbit_in _ (in2W _))). Qed.
Lemma fpath_finv x p : fpath finv x p = fpath f (last x p) (rev (belast x p)).
Proof. exact: (@fpath_finv_in T _ (in2W _)). Qed.
Lemma same_fconnect_finv : fconnect finv =2 fconnect f.
Proof.
move=> x y; rewrite (same_connect_rev symf); apply: {x y}eq_connect => x y /=.
by rewrite (canF_eq finv_f) eq_sym.
Qed.
Lemma fcard_finv : fcard_mem finv =1 fcard_mem f.
Proof. exact: eq_n_comp same_fconnect_finv. Qed.
Definition order_set n : pred T := [pred x | order x == n].
Lemma fcard_order_set n (a : {pred T}) :
a \subset order_set n -> fclosed f a -> fcard f a * n = #|a|.
Proof.
move=> a_n cl_a; rewrite /n_comp_mem; set b := [predI froots f & a].
suff <-: #|preim (froot f) b| = #|b| * n.
apply: eq_card => x; rewrite !inE (roots_root fconnect_sym).
exact/esym/(closed_connect cl_a)/connect_root.
have{cl_a a_n} (x): b x -> froot f x = x /\ order x = n.
by case/andP=> /eqP-> /(subsetP a_n)/eqnP->.
elim: {a b}#|b| {1 3 4}b (eqxx #|b|) => [|m IHm] b def_m f_b.
by rewrite eq_card0 // => x; apply: (pred0P def_m).
have [x b_x | b0] := pickP b; last by rewrite (eq_card0 b0) in def_m.
have [r_x ox_n] := f_b x b_x; rewrite (cardD1 x) [x \in b]b_x eqSS in def_m.
rewrite mulSn -{1}ox_n -(IHm _ def_m) => [|_ /andP[_ /f_b //]].
rewrite -(cardID (fconnect f x)); congr (_ + _); apply: eq_card => y.
by apply: andb_idl => /= fxy; rewrite !inE -(rootP symf fxy) r_x.
by congr (~~ _ && _); rewrite /= /in_mem /= symf -(root_connect symf) r_x.
Qed.
Lemma fclosed1 (a : {pred T}) :
fclosed f a -> forall x, (x \in a) = (f x \in a).
Proof. by move=> cl_a x; apply: cl_a (eqxx _). Qed.
Lemma same_fconnect1 x : fconnect f x =1 fconnect f (f x).
Proof. by apply: same_connect1 => /=. Qed.
Lemma same_fconnect1_r x y : fconnect f x y = fconnect f x (f y).
Proof. by apply: same_connect1r x => /=. Qed.
Lemma fcard_gt0P (a : {pred T}) :
fclosed f a -> reflect (exists x, x \in a) (0 < fcard f a).
Proof.
move=> clfA; apply: (iffP card_gt0P) => [[x /andP[]]|[x xA]]; first by exists x.
exists (froot f x); rewrite inE roots_root /=; last exact: fconnect_sym.
by rewrite -(closed_connect clfA (connect_root _ x)).
Qed.
Lemma fcard_gt1P (A : {pred T}) :
fclosed f A ->
reflect (exists2 x, x \in A & exists2 y, y \in A & ~~ fconnect f x y)
(1 < fcard f A).
Proof.
move=> clAf; apply: (iffP card_gt1P) => [|[x xA [y yA not_xfy]]].
move=> [x [y [/andP [/= rfx xA] /andP[/= rfy yA] xDy]]].
by exists x; try exists y; rewrite // -root_connect // (eqP rfx) (eqP rfy).
exists (froot f x), (froot f y); rewrite !inE !roots_root ?root_connect //=.
by split => //; rewrite -(closed_connect clAf (connect_root _ _)).
Qed.
End orbit_inj.
Hint Resolve orbit_uniq : core.
Section fcycle_p.
Variables (p : seq T) (f_p : fcycle f p).
Section mem_cycle.
Variable (Up : uniq p) (x : T) (p_x : x \in p).
(* fconnect_cycle does not dependent on Up *)
Lemma fconnect_cycle y : fconnect f x y = (y \in p).
Proof.
have [i q def_p] := rot_to p_x; rewrite -(mem_rot i p) def_p.
have{i def_p} /andP[/eqP q_x f_q]: (f (last x q) == x) && fpath f x q.
by have:= f_p; rewrite -(rot_cycle i) def_p (cycle_path x).
apply/idP/idP=> [/connectP[_ /fpathP[j ->] ->] | ]; last exact: path_connect.
case/fpathP: f_q q_x => n ->; rewrite !last_traject -iterS => def_x.
by apply: (@loopingP _ f x n.+1); rewrite /looping def_x /= mem_head.
Qed.
(* order_le_cycle does not dependent on Up *)
Lemma order_le_cycle : order x <= size p.
Proof.
apply: leq_trans (card_size _); apply/subset_leq_card/subsetP=> y.
by rewrite !(fconnect_cycle, inE) ?eqxx.
Qed.
Lemma order_cycle : order x = size p.
Proof. by rewrite -(card_uniqP Up); apply: (eq_card fconnect_cycle). Qed.
Lemma orbitE : orbit x = rot (index x p) p.
Proof.
set i := index _ _; rewrite /orbit order_cycle -(size_rot i) rot_index// -/i.
set q := _ ++ _; suffices /fpathP[j ->]: fpath f x q by rewrite /= size_traject.
by move: f_p; rewrite -(rot_cycle i) rot_index// (cycle_path x); case/andP.
Qed.
Lemma orbit_rot_cycle : {i : nat | orbit x = rot i p}.
Proof. by rewrite orbitE; exists (index x p). Qed.
End mem_cycle.
Let f_inj := inj_cycle f_p.
Let homo_f := mem_fcycle f_p.
Lemma finv_cycle : {homo finv : x / x \in p}. Proof. exact: finv_in. Qed.
Lemma f_finv_cycle : {in p, cancel finv f}. Proof. exact: f_finv_in. Qed.
Lemma finv_f_cycle : {in p, cancel f finv}. Proof. exact: finv_f_in. Qed.
Lemma finv_inj_cycle : {in p &, injective finv}. Proof. exact: finv_inj_in. Qed.
Lemma iter_finv_cycle n :
{in p, forall x, n <= order x -> iter n finv x = iter (order x - n) f x}.
Proof. exact: iter_finv_in. Qed.
Lemma cycle_orbit_cycle : {in p, forall x, fcycle f (orbit x)}.
Proof. exact: cycle_orbit_in. Qed.
Lemma fpath_finv_cycle q x : (x \in p) && (fpath finv x q) =
(last x q \in p) && fpath f (last x q) (rev (belast x q)).
Proof. exact: fpath_finv_in. Qed.
Lemma fpath_finv_f_cycle q : {in p, forall x,
fpath finv x q -> fpath f (last x q) (rev (belast x q))}.
Proof. exact: fpath_finv_f_in. Qed.
Lemma fpath_f_finv_cycle q x : last x q \in p ->
fpath f (last x q) (rev (belast x q)) -> fpath finv x q.
Proof. exact: fpath_f_finv_in. Qed.
Lemma prevE x : x \in p -> prev p x = finv x.
Proof.
move=> x_p; have /eqP/(congr1 finv) := prev_cycle f_p x_p.
by rewrite finv_f_cycle// mem_prev.
Qed.
End fcycle_p.
Section fcycle_cons.
Variables (x : T) (p : seq T) (f_p : fcycle f (x :: p)).
Lemma fcycle_rconsE : rcons (x :: p) x = traject f x (size p).+2.
Proof. by rewrite rcons_cons; have /fpathE-> := f_p; rewrite size_rcons. Qed.
Lemma fcycle_consE : x :: p = traject f x (size p).+1.
Proof. by have := fcycle_rconsE; rewrite trajectSr => /rcons_inj[/= <-]. Qed.
Lemma fcycle_consEflatten : exists k, x :: p = flatten (nseq k.+1 (orbit x)).
Proof.
move: f_p; rewrite fcycle_consE; elim/ltn_ind: (size p) => n IHn t_cycle.
have := order_le_cycle t_cycle (mem_head _ _); rewrite size_traject.
case: ltngtP => [||<-] //; last by exists 0; rewrite /= cats0.
rewrite ltnS => n_ge _; have := t_cycle.
rewrite -(subnKC n_ge) -addnS trajectD.
rewrite (iter_order_in (mem_fcycle f_p) (inj_cycle f_p)) ?mem_head//.
set m := (_ - _) => cycle_cat.
have [||k->] := IHn m; last by exists k.+1.
by rewrite ltn_subrL (leq_trans _ n_ge) ?order_gt0.
move: cycle_cat; rewrite -orderSpred/= rcons_cat rcons_cons -cat_rcons.
by rewrite cat_path last_rcons => /andP[].
Qed.
Lemma undup_cycle_cons : undup (x :: p) = orbit x.
Proof.
by have [n {1}->] := fcycle_consEflatten; rewrite undup_flatten_nseq ?undup_id.
Qed.
End fcycle_cons.
Section fcycle_undup.
Variable (p : seq T) (f_p : fcycle f p).
Lemma fcycleEflatten : exists k, p = flatten (nseq k (undup p)).
Proof.
case: p f_p => [//|x q] f_q; first by exists 0.
have [k {1}->] := @fcycle_consEflatten x q f_q.
by exists k.+1; rewrite undup_cycle_cons.
Qed.
Lemma fcycle_undup : fcycle f (undup p).
Proof.
case: p f_p => [//|x q] f_q; rewrite undup_cycle_cons//.
by rewrite (cycle_orbit_in (mem_fcycle f_q) (inj_cycle f_q)) ?mem_head.
Qed.
Let p_undup_uniq := undup_uniq p.
Let f_inj := inj_cycle f_p.
Let homo_f := mem_fcycle f_p.
Lemma in_orbit_cycle : {in p &, forall x, orbit x =i p}.
Proof.
by move=> x y xp yp; rewrite (orbitE fcycle_undup)// ?mem_rot ?mem_undup.
Qed.
Lemma eq_order_cycle : {in p &, forall x y, order y = order x}.
Proof. by move=> x y xp yp; rewrite !(order_cycle fcycle_undup) ?mem_undup. Qed.
Lemma iter_order_cycle : {in p &, forall x y, iter (order x) f y = y}.
Proof.
by move=> x y xp yp; rewrite (eq_order_cycle yp) ?(iter_order_in homo_f f_inj).
Qed.
End fcycle_undup.
Section fconnect.
Lemma fconnect_eqVf x y : fconnect f x y = (x == y) || fconnect f (f x) y.
Proof.
apply/idP/idP => [/iter_findex <-|/predU1P [<-|] //]; last first.
exact/connect_trans/fconnect1.
by case: findex => [|i]; rewrite ?eqxx// iterSr fconnect_iter orbT.
Qed.
(*****************************************************************************)
(* Lemma orbitPcycle is of type "The Following Are Equivalent", which means *)
(* all four statements are equivalent to each other. In order to use it, one *)
(* has to apply it to the natural numbers corresponding to the line, e.g. *)
(* `orbitPcycle 0 2 : fcycle f (orbit x) <-> exists k, iter k.+1 f x = x`. *)
(* examples of this are in order_id_cycle and fconnnect_f. *)
(* One may also use lemma all_iffLR to get a one sided implication, as in *)
(* orderPcycle. *)
(*****************************************************************************)
Lemma orbitPcycle {x} : [<->
(* 0 *) fcycle f (orbit x);
(* 1 *) order (f x) = order x;
(* 2 *) x \in fconnect f (f x);
(* 3 *) exists k, iter k.+1 f x = x;
(* 4 *) iter (order x) f x = x;
(* 5 *) {in orbit x &, injective f}].
Proof.
tfae=> [xorbit_cycle|||[k fkx]|fx y z|/injectivePcycle//].
- by apply: eq_order_cycle xorbit_cycle _ _ _ _; rewrite ?mem_orbit.
- move=> /subset_cardP/(_ _)->; rewrite ?inE//; apply/subsetP=> y.
by apply: connect_trans; apply: fconnect1.
- by exists (findex (f x) x); rewrite // iterSr iter_findex.
- apply: (@iter_order_cycle (traject f x k.+1)); rewrite /= ?mem_head//.
by apply/fpathP; exists k.+1; rewrite trajectSr -iterSr fkx.
- rewrite -!fconnect_orbit => /iter_findex <- /iter_findex <-.
move/(congr1 (iter (order x).-1 f)).
by rewrite -!iterSr !orderSpred -!iterD ![order _ + _]addnC !iterD fx.
Qed.
Lemma order_id_cycle x : fcycle f (orbit x) -> order (f x) = order x.
Proof. by move/(orbitPcycle 0 1). Qed.
Inductive order_spec_cycle x : bool -> Type :=
| OrderStepCycle of fcycle f (orbit x) & order x = order (f x) :
order_spec_cycle x true
| OrderStepNoCycle of ~~ fcycle f (orbit x) & order x = (order (f x)).+1 :
order_spec_cycle x false.
Lemma orderPcycle x : order_spec_cycle x (fcycle f (orbit x)).
Proof.
have [xcycle|Ncycle] := boolP (fcycle f (orbit x)); constructor => //.
by rewrite order_id_cycle.
rewrite /order (eq_card (_ : _ =1 [predU1 x & fconnect f (f x)])).
by rewrite cardU1 inE (contraNN (all_iffLR orbitPcycle 2 0)).
by move=> y; rewrite !inE fconnect_eqVf eq_sym.
Qed.
Lemma fconnect_f x : fconnect f (f x) x = fcycle f (orbit x).
Proof. by apply/idP/idP => /(orbitPcycle 0 2). Qed.
Lemma fconnect_findex x y :
fconnect f x y -> y != x -> findex x y = (findex (f x) y).+1.
Proof.
rewrite /findex fconnect_orbit /orbit -orderSpred /= inE => /orP [-> //|].
rewrite eq_sym; move=> yin /negPf->; have [_ eq_o|_ ->//] := orderPcycle x.
by rewrite -(orderSpred (f x)) trajectSr -cats1 index_cat -eq_o yin.
Qed.
End fconnect.
End Orbit.
#[global] Hint Resolve in_orbit mem_orbit order_gt0 orbit_uniq : core.
Prenex Implicits order orbit findex finv order_set.
Arguments orbitPcycle {T f x}.
Section FconnectId.
Variable T : finType.
Lemma fconnect_id (x : T) : fconnect id x =1 xpred1 x.
Proof. by move=> y; rewrite (@fconnect_cycle _ _ [:: x]) //= ?inE ?eqxx. Qed.
Lemma order_id (x : T) : order id x = 1.
Proof. by rewrite /order (eq_card (fconnect_id x)) card1. Qed.
Lemma orbit_id (x : T) : orbit id x = [:: x].
Proof. by rewrite /orbit order_id. Qed.
Lemma froots_id (x : T) : froots id x.
Proof. by rewrite /roots -fconnect_id connect_root. Qed.
Lemma froot_id (x : T) : froot id x = x.
Proof. by apply/eqP; apply: froots_id. Qed.
Lemma fcard_id (a : {pred T}) : fcard id a = #|a|.
Proof. by apply: eq_card => x; rewrite inE froots_id. Qed.
End FconnectId.
Section FconnectEq.
Variables (T : finType) (f f' : T -> T).
Lemma finv_eq_can : cancel f f' -> finv f =1 f'.
Proof.
move=> fK; have inj_f := can_inj fK.
by apply: bij_can_eq fK; [apply: injF_bij | apply: finv_f].
Qed.
Hypothesis eq_f : f =1 f'.
Let eq_rf := eq_frel eq_f.
Lemma eq_fconnect : fconnect f =2 fconnect f'.
Proof. exact: eq_connect eq_rf. Qed.
Lemma eq_fcard : fcard_mem f =1 fcard_mem f'.
Proof. exact: eq_n_comp eq_fconnect. Qed.
Lemma eq_finv : finv f =1 finv f'.
Proof.
by move=> x; rewrite /finv /order (eq_card (eq_fconnect x)) (eq_iter eq_f).
Qed.
Lemma eq_froot : froot f =1 froot f'.
Proof. exact: eq_root eq_rf. Qed.
Lemma eq_froots : froots f =1 froots f'.
Proof. exact: eq_roots eq_rf. Qed.
End FconnectEq.
Section FinvEq.
Variables (T : finType) (f : T -> T).
Hypothesis injf : injective f.
Lemma finv_inv : finv (finv f) =1 f.
Proof. exact: (finv_eq_can (f_finv injf)). Qed.
Lemma order_finv : order (finv f) =1 order f.
Proof. by move=> x; apply: eq_card (same_fconnect_finv injf x). Qed.
Lemma order_set_finv n : order_set (finv f) n =i order_set f n.
Proof. by move=> x; rewrite !inE order_finv. Qed.
End FinvEq.
Section RelAdjunction.
Variables (T T' : finType) (h : T' -> T) (e : rel T) (e' : rel T').
Hypotheses (sym_e : connect_sym e) (sym_e' : connect_sym e').
Record rel_adjunction_mem m_a := RelAdjunction {
rel_unit x : in_mem x m_a -> {x' : T' | connect e x (h x')};
rel_functor x' y' :
in_mem (h x') m_a -> connect e' x' y' = connect e (h x') (h y')
}.
Variable a : {pred T}.
Hypothesis cl_a : closed e a.
Local Notation rel_adjunction := (rel_adjunction_mem (mem a)).
Lemma intro_adjunction (h' : forall x, x \in a -> T') :
(forall x a_x,
[/\ connect e x (h (h' x a_x))
& forall y a_y, e x y -> connect e' (h' x a_x) (h' y a_y)]) ->
(forall x' a_x,
[/\ connect e' x' (h' (h x') a_x)
& forall y', e' x' y' -> connect e (h x') (h y')]) ->
rel_adjunction.
Proof.
move=> Aee' Ae'e; split=> [y a_y | x' z' a_x].
by exists (h' y a_y); case/Aee': (a_y).
apply/idP/idP=> [/connectP[p e'p ->{z'}] | /connectP[p e_p p_z']].
elim: p x' a_x e'p => //= y' p IHp x' a_x.
case: (Ae'e x' a_x) => _ Ae'x /andP[/Ae'x e_xy /IHp e_yz] {Ae'x}.
by apply: connect_trans (e_yz _); rewrite // -(closed_connect cl_a e_xy).
case: (Ae'e x' a_x) => /connect_trans-> //.
elim: p {x'}(h x') p_z' a_x e_p => /= [|y p IHp] x p_z' a_x.
by rewrite -p_z' in a_x *; case: (Ae'e _ a_x); rewrite sym_e'.
case/andP=> e_xy /(IHp _ p_z') e'yz; have a_y: y \in a by rewrite -(cl_a e_xy).
by apply: connect_trans (e'yz a_y); case: (Aee' _ a_x) => _ ->.
Qed.
Lemma strict_adjunction :
injective h -> a \subset codom h -> rel_base h e e' [predC a] ->
rel_adjunction.
Proof.
move=> /= injh h_a a_ee'; pose h' x Hx := iinv (subsetP h_a x Hx).
apply: (@intro_adjunction h') => [x a_x | x' a_x].
rewrite f_iinv connect0; split=> // y a_y e_xy.
by rewrite connect1 // -a_ee' !f_iinv ?negbK.
rewrite [h' _ _]iinv_f //; split=> // y' e'xy.
by rewrite connect1 // a_ee' ?negbK.
Qed.
Let ccl_a := closed_connect cl_a.
Lemma adjunction_closed : rel_adjunction -> closed e' [preim h of a].
Proof.
case=> _ Ae'e; apply: intro_closed => // x' y' /connect1 e'xy a_x.
by rewrite Ae'e // in e'xy; rewrite !inE -(ccl_a e'xy).
Qed.
Lemma adjunction_n_comp :
rel_adjunction -> n_comp e a = n_comp e' [preim h of a].
Proof.
case=> Aee' Ae'e.
have inj_h: {in predI (roots e') [preim h of a] &, injective (root e \o h)}.
move=> x' y' /andP[/eqP r_x' /= a_x'] /andP[/eqP r_y' _] /(rootP sym_e).
by rewrite -Ae'e // => /(rootP sym_e'); rewrite r_x' r_y'.
rewrite /n_comp_mem -(card_in_image inj_h); apply: eq_card => x.
apply/andP/imageP=> [[/eqP rx a_x] | [x' /andP[/eqP r_x' a_x'] ->]]; last first.
by rewrite /= -(ccl_a (connect_root _ _)) roots_root.
have [y' e_xy]:= Aee' x a_x; pose x' := root e' y'.