-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathMinimumPathSum.go
64 lines (55 loc) · 1.3 KB
/
MinimumPathSum.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
package MinimumPathSum
//Given a m x n grid filled with non-negative numbers,
//find a path from top left to bottom right which minimizes the sum of all numbers along its path.
//
//Note: You can only move either down or right at any point in time.
//
//Example 1:
//[[1,3,1],
//[1,5,1],
//[4,2,1]]
//Given the above grid map, return 7. Because the path 1→3→1→1→1 minimizes the sum.
//
//Accepted.
func minPathSum(grid [][]int) int {
gridLength := len(grid)
if gridLength == 0 {
return 0
}
gridSingleLength := len(grid[0])
if gridLength == 1 {
if gridSingleLength == 0 {
return 0
}
if gridSingleLength == 1 {
return grid[0][0]
}
}
matrix := make([][]int, gridLength)
for i := range matrix {
subArray := make([]int, gridSingleLength)
for j := range subArray {
subArray[j] = 0
}
matrix[i] = subArray
}
matrix[0][0] = grid[0][0]
for i := 1; i < gridLength; i++ {
matrix[i][0] = matrix[i-1][0] + grid[i][0]
}
for i := 1; i < gridSingleLength; i++ {
matrix[0][i] = matrix[0][i-1] + grid[0][i]
}
for i := 1; i < gridLength; i++ {
for j := 1; j < gridSingleLength; j++ {
matrix[i][j] = min(matrix[i-1][j]+grid[i][j], matrix[i][j-1]+grid[i][j])
}
}
return matrix[gridLength-1][gridSingleLength-1]
}
func min(a int, b int) int {
if a < b {
return a
}
return b
}