Skip to content

This GitHub repository shares the scripts in Julia programming language that are used for model development and data visualization according to the research article "Machine Learning for Enhanced Identification in RPLC/HRMS Non-Targeted Workflows".

License

Notifications You must be signed in to change notification settings

TommyNHL/exposomeProjUvA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

exposomeProjUvA

This GitHub repository shares the scripts in Julia and Python programming languages that are used for models' development for the work entitled "Machine Learning for Enhanced Identification in RPLC/HRMS Non-Targeted Workflows".

The 3 machine learning models that are developed in this project "exposomeProjUvA" are available at

https://bitbucket.org/hiulokngan/modelsExposomeProjUvA/

Published: 29 January 2025, Version 2

DOI: 10.26434/chemrxiv-2024-mdl4q

Hiu-Lok Ngan, Viktoriia Turkina, Denice van Herwerden, Hong Yan, Zongwei Cai, Saer Samanipour. Machine Learning for Enhanced Identification in RPLC/HRMS Non-Targeted Workflows. ChemRxiv. 2025; doi:10.26434/chemrxiv-2024-mdl4q-v2 This content is a preprint and has not been peer-reviewed.

Procedure

0_tools (folder)

A_Installer11.ipynb

1_model1 (folder)

A_CombinePubchemFP.jl

- INPUT(S): dataPubchemFingerprinter.csv

- OUTPUT(S): dataPubchemFingerprinter_converted.csv

B_MergeApc2dPubchem.jl

- INPUT(S): dataAP2DFingerprinter.csv

- INPUT(S): dataPubchemFingerprinter_converted.csv

- OUTPUT(S): dataAllFingerprinter_4RiPredict.csv

C_ModelDeploy4FPbasedRi.jl

- INPUT(S): dataAllFingerprinter_4RiPredict.csv

- INPUT(S): CocamideExtendedWithStratification.joblib

- OUTPUT(S): dataAllFP_withNewPredictedRiWithStratification.csv

D_FeatureCorrelation.ipynb

2_model2 (folder)

A_PreProcessInternalDB.jl (README_dbColHeaders.md)

- INPUT(S): Database_INTERNAL_2022-11-17.csv

- INPUT(S): CNLs_10mDa.csv

- INPUT(S): dataAllFP_withNewPredictedRiWithStratification.csv

- OUTPUT(S): CNLs_10mDa_missed.csv

- OUTPUT(S): databaseOfInternal_withNLs.csv

- OUTPUT(S): dataframeCNLsRows.csv

- OUTPUT(S): dfCNLsSumModeling.csv

- OUTPUT(S): massesCNLsDistrution.png

B_FPDfPre4Leverage.jl

- INPUT(S): databaseOfInternal_withNLs.csv

- INPUT(S): dataframeCNLsRows.csv

- INPUT(S): dataAllFP_withNewPredictedRiWithStratification.csv

- OUTPUT(S): countingRows4Leverage.csv

- OUTPUT(S): countingRowsInFP4Leverage.csv

- OUTPUT(S): dataAllFP_withNewPredictedRiWithStratification_Freq.csv

C_TrainTestSplitPre.jl

- INPUT(S): dataframeCNLsRows.csv

- INPUT(S): dataAllFP_withNewPredictedRiWithStratification_Freq.csv

- OUTPUT(S): databaseOfInternal_withNLsOnly.csv

- OUTPUT(S): databaseOfInternal_withEntryInfoOnly.csv

- OUTPUT(S): databaseOfInternal_withINCHIKEYInfoOnly.csv

- OUTPUT(S): databaseOfInternal_withYOnly.csv

D_LeverageGetIdx.jl

- INPUT(S): dataAllFP_withNewPredictedRiWithStratification_Freq.csv

- OUTPUT(S): dataframe73_dfTrainSetWithStratification_95index.csv

- OUTPUT(S): dataframe73_dfTestSetWithStratification_95index.csv

- OUTPUT(S): dataframe73_dfWithStratification_95index.csv

- OUTPUT(S): dataAllFP73_withNewPredictedRiWithStratification_FreqAnd95Leverage.csv

E_TrainTestSplit.jl

- INPUT(S): databaseOfInternal_withEntryInfoOnly.csv

- INPUT(S): databaseOfInternal_withINCHIKEYInfoOnly.csv

- INPUT(S): databaseOfInternal_withNLsOnly.csv

- INPUT(S): databaseOfInternal_withYOnly.csv

- INPUT(S): dataframe73_dfTrainSetWithStratification_95index.csv

- INPUT(S): dataframe73_dfTestSetWithStratification_95index.csv

- OUTPUT(S): dataframe73_95dfTrainSetWithStratification.csv

- OUTPUT(S): dataframe73_95dfTestSetWithStratification.csv

F_CNLmodelTrainValTest.jl

- INPUT(S): dataframe73_95dfTestSetWithStratification.csv

- INPUT(S): dataframe73_95dfTrainSetWithStratification.csv

- INPUT(S): CocamideExtWithStartification_Fingerprints_train.csv

- INPUT(S): CocamideExtWithStratification_Fingerprints_test.csv

- INPUT(S): dataAllFP_withNewPredictedRiWithStratification.csv

- OUTPUT(S): hyperparameterTuning_RFwithStratification10F.csv

- OUTPUT(S): CocamideExtended73_CNLsRi_RFwithStratification.joblib

- OUTPUT(S): dataframe73_dfTrainSetWithStratification_withCNLPredictedRi.csv

- OUTPUT(S): dataframe73_dfTestSetWithStratification_withCNLPredictedRi.csv

- OUTPUT(S): dataframe73_dfTrainSetWithStratification_withCNLPredictedRi_withCocamides.csv

- OUTPUT(S): dataframe73_dfTestSetWithStratification_withCNLPredictedRi_withCocamides.csv

- OUTPUT(S): CNLRiPrediction73_RFTrainWithStratification_v3.png

- OUTPUT(S): CNLRiPrediction73_RFTestWithStratification_v3.png

G_CNLdfLeverage.jl

- INPUT(S): dataframe73_95dfTrainSetWithStratification.csv

- INPUT(S): dataframe73_dfTrainSetWithStratification_95FPCNLleverage.csv

- OUTPUT(S): CNL model 95% leverage cut-off = 0.14604417882015916

- OUTPUT(S): CNLLeverageValueDistrution.png

H_Results.jl

I_EDA_Results.jl

J_FeatureCorrelation.ipynb

3_model3 (folder)

3_I_prepareSemisynData (sub-folder)

A_DataSplitMatch.jl

- INPUT(S): Cand_synth_rr10_1_1000.csv

- INPUT(S): Cand_synth_rr10_1001_2000.csv

- INPUT(S): Cand_synth_rr10_2001_3000.csv

- INPUT(S): Cand_synth_rr10_3001_4000.csv

- INPUT(S): Cand_synth_rr10_4001_5000.csv

- INPUT(S): dataAllFP_withNewPredictedRiWithStratification.csv

- INPUT(S): generated_susp.csv

- OUTPUT(S): Cand_synth_rr10_1-5000.csv

- OUTPUT(S): Cand_synth_rr10_1-5000_extractedWithoutDeltaRi.csv

- OUTPUT(S): Cand_synth_rr10_1-5000_extractedWithoutDeltaRi_trainValDf.csv

- OUTPUT(S): Cand_synth_rr10_1-5000_extractedWithoutDeltaRi_isotestDf.csv

B_DfCNLdeploy.jl

- INPUT(S): Cand_synth_rr10_1-5000_extractedWithoutDeltaRi_trainValDf.csv or Cand_synth_rr10_1-5000_extractedWithoutDeltaRi_isotestDf.csv

- INPUT(S): dataframe73_dfTestSetWithStratification_withCNLPredictedRi.csv

- INPUT(S): CocamideExtended73_CNLsRi_RFwithStratification.joblib

- OUTPUT(S): TPTN_dfCNLfeaturesStr.csv

- OUTPUT(S): Cand_synth_rr10_1-5000_extractedWithCNLsList.csv or Cand_synth_rr10_1-5000_extractedWithCNLsList_pest.csv

- OUTPUT(S): dfCNLsSum_1.csv - dfCNLsSum_8.csv or dfCNLsSum_pest.csv

- OUTPUT(S): TPTNmassesCNLsDistrution_8.png

- OUTPUT(S): dataframeCNLsRows4TPTNModeling_8withCNLRideltaRi.csv or dataframeCNLsRows4TPTNModeling_PestwithCNLRideltaRi.csv

- OUTPUT(S): dataframeCNLsRows4TPTNModeling_TPOnlywithCNLRideltaRi.csv or dataframeCNLsRows4TPTNModeling_TPOnlywithCNLRideltaRi_pest.csv

- OUTPUT(S): dfCNLsSum_TP.csv or dfCNLsSum_TP_pest.csv

- OUTPUT(S): dfCNLsSum.csv

- OUTPUT(S): TPTNmassesCNLsDistrution.png or TPTNmassesCNLsDistrution_pest.png

C_TPTNmodelCNLleverageCutoff.jl

- INPUT(S): dataframeCNLsRows4TPTNModeling_1withCNLRideltaRi.csv - dataframeCNLsRows4TPTNModeling_8withCNLRideltaRi.csv or dataframeCNLsRows4TPTNModeling_PestwithCNLRideltaRi.csv

- OUTPUT(S): dataframeTPTNModeling_1.csv - dataframeTPTNModeling_8.csv or dataframeTPTNModeling_pest.csv

D_TPTNmodelTrainTestSplit_ALL.jl

- INPUT(S): dataframeTPTNModeling_1.csv - dataframeTPTNModeling_8.csv and dataframeTPTNModeling_pest.csv

- OUTPUT(S): dataframeTPTNModeling_all.csv

- OUTPUT(S): dataframeTPTNModeling_withLeverage_all.csv

- OUTPUT(S): dataframeTPTNModeling_TrainIndex_all.csv

- OUTPUT(S): dataframeTPTNModeling_TrainDFwithhl_all.csv

- OUTPUT(S): dataframeTPTNModeling_TrainYesIndex_all.csv

- OUTPUT(S): dataframeTPTNModeling_TrainYesDFwithhl_all.csv

- OUTPUT(S): dataframeTPTNModeling_TestIndex_all.csv

- OUTPUT(S): dataframeTPTNModeling_TestDFwithhl_all.csv

- OUTPUT(S): dataframeTPTNModeling_TestYesIndex_all.csv

- OUTPUT(S): dataframeTPTNModeling_TestYesDFwithhl_all.csv

3_II_readyPestData (sub-folder)

E_TestSamplesPre.jl

- INPUT(S): CNL_Ref.csv

- OUTPUT(S): CNL_Ref_PestMix_1-8.csv

- OUTPUT(S): INCHIKEYs_CNL_Ref_PestMix_1-8.csv

- OUTPUT(S): INCHIKEYs_CNL_Ref_PestMix_1.csv - INCHIKEYs_CNL_Ref_PestMix_8.csv

F_TestTemplate.jl (for test samples in the foler- PestMix1-8_test_report_comp_IDs)

- INPUT(S): INCHIKEYs_CNL_Ref_PestMix_1-8.csv

- INPUT(S): PestMix1-8_test_report_comp_IDs.csv

- INPUT(S): dataAllFP_withNewPredictedRiWithStratification.csv

- INPUT(S): TPTN_dfCNLfeaturesStr.csv

- INPUT(S): CocamideExtended73_CNLsRi_RFwithStratification.joblib

- OUTPUT(S): PestMix1-8_test_report_comp_IDs_check.csv

- OUTPUT(S): PestMix1-8_test_report_comp_IDs_checked.csv

- OUTPUT(S): PestMix1-8_test_report_comp_IDs_ready4CNLdf.csv

- OUTPUT(S): PestMix1-8_test_report_comp_IDs_extractedWithCNLsList.csv

- OUTPUT(S): PestMix1-8_test_report_comp_IDs_withCNLRideltaRi.csv

- OUTPUT(S): PestMix1-8_test_report_comp_IDs_dataframeTPTNModeling.csv

3_III_EDA (sub-folder)

G_PreEDA.jl

- INPUT(S): PestMix1-8_1ug-L_NoTea_test_report_comp_IDs_dataframeTPTNModeling.csv

- INPUT(S): PestMix1-8_1ug-L_Tea_test_report_comp_IDs_dataframeTPTNModeling

- INPUT(S): dataframeTPTNModeling_TrainYesDFwithhl_all.csv

- INPUT(S): dataframeTPTNModeling_TestYesDFwithhl_all.csv

- OUTPUT(S): allRealsampleNoTea_dataframeTPTNModeling.csv

- OUTPUT(S): allRealsampleWithTea_dataframeTPTNModeling.csv

- OUTPUT(S): trainDF_dataframeTPTNModeling_0d5FinalScoreRatio.csv

- OUTPUT(S): trainDF_dataframeTPTNModeling_0d5FinalScoreRatioDE.csv

- OUTPUT(S): trainDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- OUTPUT(S): testDF_dataframeTPTNModeling_0d5FinalScoreRatio.csv

- OUTPUT(S): testDF_dataframeTPTNModeling_0d5FinalScoreRatioDE.csv

- OUTPUT(S): testDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- OUTPUT(S): noTeaDF_dataframeTPTNModeling_0d5FinalScoreRatio.csv

- OUTPUT(S): noTeaDF_dataframeTPTNModeling_0d5FinalScoreRatioDE.csv

- OUTPUT(S): noTeaDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- OUTPUT(S): TeaDF_dataframeTPTNModeling_0d5FinalScoreRatio.csv

- OUTPUT(S): TeaDF_dataframeTPTNModeling_0d5FinalScoreRatioDE.csv

- OUTPUT(S): TeaDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

H_EDA_RefMatchFragRatio.jl

I_EDA_UsrMatchFragRatio.jl

J_EDA_MS1Error.jl

K_EDA_MS2Error.jl

L_EDA_MS2ErrorStd.jl

M_EDA_Match.jl

N_EDA_FinalScoreRatio.jl

O_EDA_MonoisotopicMass.jl

P_EDA_DeltaRI.jl

- INPUT(S): trainDF_dataframeTPTNModeling_0d5FinalScoreRatio.csv

- INPUT(S): trainDF_dataframeTPTNModeling_0d5FinalScoreRatioDE.csv

- INPUT(S): trainDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- INPUT(S): testDF_dataframeTPTNModeling_0d5FinalScoreRatio.csv

- INPUT(S): testDF_dataframeTPTNModeling_0d5FinalScoreRatioDE.csv

- INPUT(S): testDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- INPUT(S): noTeaDF_dataframeTPTNModeling_0d5FinalScoreRatio.csv

- INPUT(S): noTeaDF_dataframeTPTNModeling_0d5FinalScoreRatioDE.csv

- INPUT(S): noTeaDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- INPUT(S): TeaDF_dataframeTPTNModeling_0d5FinalScoreRatio.csv

- INPUT(S): TeaDF_dataframeTPTNModeling_0d5FinalScoreRatioDE.csv

- INPUT(S): TeaDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- OUTPUT(S): outplot_TPTNDistrution_FeatureRefMatchFragRatio_noFilter.png

- OUTPUT(S): outplot_TPTNDistrution_FeatureUsrMatchFragRatio_noFilter.png

- OUTPUT(S): outplot_TPTNDistrution_FeatureMS1Error_noFilter.png

- OUTPUT(S): outplot_TPTNDistrution_FeatureMS2Error_noFilter.png

- OUTPUT(S): outplot_TPTNDistrution_FeatureMS2ErrorStd_noFilter.png

- OUTPUT(S): outplot_TPTNDistrution_FeatureMatch_noFilter.png

- OUTPUT(S): outplot_TPTNDistrution_FeatureFinalScoreRatio_noFilter.png

- OUTPUT(S): outplot_TPTNDistrution_FeatureMonoisotopicMass_noFilter.png

- OUTPUT(S): outplot_TPTNDistrution_FeatureDeltaRi_noFilter.png

3_IV_featureModelSelection (sub-folder)

Q_FeatureSelection.ipynb

- INPUT(S): trainDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- INPUT(S): testDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- INPUT(S): noTeaDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- INPUT(S): TeaDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- OUTPUT(S): sns_heatmap( )

R_FeatureModelSelection.jl

- INPUT(S): trainDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- INPUT(S): testDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- INPUT(S): noTeaDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- INPUT(S): TeaDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- OUTPUT(S): hyperparameterTuning_modelSelection_RF(n)_noFilter_noLog(UsrFragMatchRatio).csv

- OUTPUT(S): hyperparameterTuning_modelSelection_DT(n)_noFilter_noLog(UsrFragMatchRatio).csv

- OUTPUT(S): hyperparameterTuning_modelSelection_KNN(n)_noLog(UsrFragMatchRatio)_noMatchDiff.csv

- OUTPUT(S): hyperparameterTuning_modelSelection_KNN(n)_noLog(UsrFragMatchRatio)_noMatchDiff_noDeltaRI.csv

- OUTPUT(S): hyperparameterTuning_modelSelection_LR(n)_noFilter_noLog(UsrFragMatchRatio).csv"

T_Plot4ModelFeatureSelection.ipynb

- INPUT(S): hyperparameterTuning_modelSelection_LR_noFilterSummary.xlsx

- INPUT(S): hyperparameterTuning_modelSelection_DT_noFilterSummary.xlsx

- INPUT(S): hyperparameterTuning_modelSelection_RF_noFilterSummary.xlsx

- INPUT(S): hyperparameterTuning_modelSelection_KNN_noFilterSummary.xlsx

- OUTPUT(S): updated4pestNoTea_8paraVS7para.jpg

- OUTPUT(S): updated4pest_8paraVS7para.jpg

- OUTPUT(S): updatedPestRecall_8paraVS7para.jpg

U_FeatureImportance.ipynb

3_V_modelEvaluation (sub-folder)

U_ModelEvaluation.jl

- INPUT(S): trainDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- INPUT(S): testDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- INPUT(S): noTeaDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- INPUT(S): TeaDF_dataframeTPTNModeling_0d5FinalScoreRatioDEnoFilterSTD.csv

- OUTPUT(S): modelTPTNModeling_6paraKNN_noFilterWithDeltaRI.joblib

- OUTPUT(S): modelTPTNModeling_6paraKNN_noFilterWithOutDeltaRI.joblib

- OUTPUT(S): dataframeTPTNModeling_TrainDF_withDeltaRIandPredictedTPTN_KNN.csv

- OUTPUT(S): dataframeTPTNModeling_TrainDF_withOutDeltaRIandPredictedTPTN_KNN.csv

- OUTPUT(S): dataframeTPTNModeling_TrainDF_withDeltaRIandPredictedTPTNandpTP_KNN.csv

- OUTPUT(S): dataframeTPTNModeling_TrainDF_withOutDeltaRIandPredictedTPTNandpTP_KNN.csv

- OUTPUT(S): dataframeTPTNModeling_ValDF_withDeltaRIandPredictedTPTN_KNN.csv

- OUTPUT(S): dataframeTPTNModeling_ValDF_withOutDeltaRIandPredictedTPTN_KNN.csv

- OUTPUT(S): dataframeTPTNModeling_ValDF_withDeltaRIandPredictedTPTNandpTP_KNN.csv

- OUTPUT(S): dataframeTPTNModeling_ValDF_withOutDeltaRIandPredictedTPTNandpTP_KNN.csv

- OUTPUT(S): dataframeTPTNModeling_PestDF_withDeltaRIandPredictedTPTN_KNN.csv

- OUTPUT(S): dataframeTPTNModeling_PestDF_withOutDeltaRIandPredictedTPTN_KNN.csv

- OUTPUT(S): dataframeTPTNModeling_PestDF_withDeltaRIandPredictedTPTNandpTP_KNN.csv

- OUTPUT(S): dataframeTPTNModeling_PestDF_withOutDeltaRIandPredictedTPTNandpTP_KNN.csv

- OUTPUT(S): dataframeTPTNModeling_Pest2DF_withDeltaRIandPredictedTPTN_KNN.csv

- OUTPUT(S): dataframeTPTNModeling_Pest2DF_withOutDeltaRIandPredictedTPTN_KNN.csv

- OUTPUT(S): dataframeTPTNModeling_Pest2DF_withDeltaRIandPredictedTPTNandpTP_KNN.csv

- OUTPUT(S): dataframeTPTNModeling_Pest2DF_withOutDeltaRIandPredictedTPTNandpTP_KNN.csv

V_TPTNmodelCutOff.jl

- INPUT(S): dataframeTPTNModeling_TrainDF_withDeltaRIandPredictedTPTNandpTP_KNN.csv

- INPUT(S): dataframeTPTNModeling_ValDF_withDeltaRIandPredictedTPTNandpTP_KNN.csv

- INPUT(S): dataframeTPTNModeling_PestDF_withDeltaRIandPredictedTPTNandpTP_KNN.csv

- INPUT(S): dataframeTPTNModeling_Pest2DF_withDeltaRIandPredictedTPTNandpTP_KNN.csv

- OUTPUT(S): dataframePostPredict_TrainALLWithDeltaRI_KNN.csv

- OUTPUT(S): dataframePostPredict_TestALLWithDeltaRI_KNN.csv

- OUTPUT(S): dataframePostPredict_PestNoTeaWithDeltaRI_KNN.csv

- OUTPUT(S): dataframePostPredict_Pest2WithTeaWithDeltaRI_KNN.csv

- OUTPUT(S): TPTNPrediction_KNNtrainTestCM.png

- OUTPUT(S): TPTNPrediction_KNNpestPest2CM.png

- OUTPUT(S): dataframePostPredict_TPRFNRFDR_newTrainALL_KNN.csv

- OUTPUT(S): dataframePostPredict_TPRFNRFDR_newTestALL_KNN.csv

- OUTPUT(S): dataframePostPredict_TPRFNRFDR_newPestNoTea_KNN.csv

- OUTPUT(S): TPTNPrediction_P1threshold2TPRFNRFDR_newTrainALLylims_KNN.png

- OUTPUT(S): dataframePostPredict10FDR_TrainALLWithDeltaRI_KNN.csv

- OUTPUT(S): dataframePostPredict10FDR_TestALLWithDeltaRI_KNN.csv

- OUTPUT(S): dataframePostPredict10FDR_PestNoTeaWithDeltaRI_KNN.csv

- OUTPUT(S): dataframePostPredict10FDR_Pest2WithTeaWithDeltaRI_KNN.csv

W_FDRcontrolledResults.ipynb

4_application (folder)

A_TestTemplate_ALL.jl

- INPUT(S): PestMix1-8_test_report_comp_IDs_dataframeTPTNModeling.csv

- INPUT(S): modelTPTNModeling_6paraKNN_noFilterWithDeltaRI.joblib

- OUTPUT(S): PestMix1-8_test_report_comp_IDs_dataframeTPTNModeling_0d5FinalScoreRatioDEFilterSTD.csv

- OUTPUT(S): PestMix1-8_test_report_comp_IDs_withDeltaRIandPredictedTPTN_KNN.csv

- OUTPUT(S): PestMix1-8_test_report_comp_IDs_withDeltaRIandPredictedTPTNandpTP_KNN.csv

- OUTPUT(S): PestMix1-8_test_report_comp_IDs_withDeltaRIandPredictedTPTNandpTP_KNN_ind.csv

About

This GitHub repository shares the scripts in Julia programming language that are used for model development and data visualization according to the research article "Machine Learning for Enhanced Identification in RPLC/HRMS Non-Targeted Workflows".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published