Codebase for Research Project 2 - Building an Evil Phone Charging Station. Author: Tomás Philippart
Attack and threat model/setup:
- Make EasyOCR perform single character recognition, fine tune settings for it.
- Experiment with other OCR engines (doctr, Google Cloud Vision, etc.)
Simply install the requirements necessary by running:
$ pip3 install -r requirements.txt
NOTE: All of the development was done on MacOS Ventura, I cannot confirm that all of the code is cross-platform.
$ python3 main.py [--mode <usb, video>] --filename <FILENAME> [--framerate <FRAMERATE>, --mode <tesseract|easyocr|google_vision>, --keywords <x,y,z>]
Check .txt
under /results
folder for the processed text.
$ python3 change_detect.py --frame_dir media/google_login-frames [--interactive] [--ocr {easyocr|tesseract}]
Use --interactive
first to see how this program actually works. User input:
- "a": previous frame
- "d": next frame
- "q": quit
- " " (spacebar): for now nothing really, but will do something one day
Not using it simply prints out the OCR'd text of the character difference, without requiring user input.
Note that EasyOCR currently performs better than tesseract.
$ python3 main.py --mode usb --filename HDMI_Capture --capture_time 15 --ocr_mode tesseract
Starting frame capture... Press CTRL+C to stop recording frames.
Converting frames to text using tesseract mode...
Writing results to results/HDMI_Capture.txt...
Done!
$ python3 main.py --mode video --filename media/instagram_login.mp4 --framerate 5 --ocr_mode tesseract
Converting video to frames: 100%|██████████████████████████████████████████████| 805/805 [00:26<00:00, 30.57frame/s]
Filtering duplicate frames: 100%|████████████████████████████████████████████| 805/805 [00:00<00:00, 1776.90frame/s]
Converting frames to text: 100%|███████████████████████████████████████████████| 515/515 [05:00<00:00, 1.71frame/s]
Results writen to results/instagram_login.txt.
WIP!