-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkalman_filter_verbose.c
307 lines (251 loc) · 10.6 KB
/
kalman_filter_verbose.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#include <stdbool.h>
#include <Python.h>
#include "numpy/arrayobject.h"
#include <cblas.h>
#include <utils.h>
void ckalman_filter_verbose(
// n: the total number of observations
int n,
// m: the dimension of the state vector
int m,
// d: the dimension of observations
int d,
// Filter State Estimate:
double *x,
// Covariance Matrix:
double *P,
double *dt, int incdt,
double *ct, int incct,
double *Tt, int incTt,
double *Zt, int incZt,
// Measurement Uncertainty / Noise:
double *HHt, int incHHt,
// Measurement Function:
double *GGt, int incGGt,
double *yt,
// Outputs:
double *loglik,
double *att_output,
double *Ptt_output,
double *at_output,
double *Pt_output,
double *Ft_inv_output,
double *vt_output,
double *Kt_output)
{
// Instantiate:
*loglik = 0;
// Coerce dtypes:
blasint blas_n = (blasint)n;
blasint blas_m = (blasint)m;
blasint blas_d = (blasint)d;
// Utilised array dimensions:
blasint m_x_m = m * m;
blasint m_x_d = m * d;
// integers and double precisions used in dcopy and dgemm
blasint intone = 1;
blasint intminusone = -1;
double dblone = 1.0, dblminusone = -1.0, dblzero = 0.0;
// Sequential Processing variables:
int N_obs = 0;
int na_sum;
double Ft;
// Time-series iterator:
int t = 0;
/* NA detection */
int *NAindices = malloc(sizeof(int) * d);
int *positions = malloc(sizeof(int) * d);
/* Reduced arrays when NA's at time t */
double *yt_temp = malloc(sizeof(double) * (d - 1));
double *ct_temp = malloc(sizeof(double) * (d - 1));
double *Zt_temp = malloc(sizeof(double) * (d - 1) * m);
double *GGt_temp = malloc(sizeof(double) * (d - 1));
double *Zt_t = malloc(sizeof(double) * (d * m));
double *Zt_tSP = malloc(sizeof(double) * m);
double *at = malloc(sizeof(double) * m);
double *Pt = malloc(sizeof(double) * m * m);
double *tmpmxSP = (double *)calloc(m, sizeof(double));
double *tmpmxm = (double *)calloc(m_x_m, sizeof(double));
/* at = x */
cblas_dcopy(blas_m, x, intone, at, intone);
/* Pt = P */
cblas_dcopy(m_x_m, P, intone, Pt, intone);
// initialise att:
cblas_dcopy(blas_m, at, intone, &at_output[m * t + m], intone);
// initialise Ptt:
cblas_dcopy(blas_m, Pt, intone, &Pt_output[m * t + m], intone);
/*Initial State Outputs:*/
cblas_dcopy(blas_m, at, intone, &at_output[0], intone);
cblas_dcopy(m_x_m, Pt, intone, &Pt_output[0], intone);
// Iterate over all time steps:
while (t < n)
{
// How many NA's at time t?
na_sum = numberofNA(&yt[d * t], NAindices, positions, d);
#ifdef DEBUGMODE
printf("\nNumber of NAs in iter %i: %i\n", t, na_sum);
#endif
/*********************************************************************************/
/* ---------- ---------- ---------- filter step ---------- ---------- ---------- */
/*********************************************************************************/
/*****************************************/
/* ---------- case 1: no NA's:---------- */
/*****************************************/
if (na_sum == 0)
{
// Create Zt for time t
cblas_dcopy(m_x_d, &Zt[m_x_d * t * incZt], intone, Zt_t, intone);
// Increment number of observations:
N_obs += d;
// Sequential Processing - Univariate Treatment of the Multivariate Series:
for (int SP = 0; SP < d; SP++)
{
#ifdef DEBUGMODE
printf("SP = %i", SP);
#endif
// Get the specific values of Z for SP:
for (int j = 0; j < m; j++)
{
Zt_tSP[j] = Zt_t[SP + j * d];
}
// Step 1 - Measurement Error:
// Compute Vt[SP,t] = yt[SP,t] - ct[SP,t * incct] + Zt[SP,,t * incZt] %*% at[SP,t]
vt_output[SP + d * t] = yt[SP + d * t] - ct[SP + d * t * incct];
#ifdef DEBUGMODE
print_array(Zt_tSP, 1, m, "Zt_tSP");
#endif
// vt[SP,t] = vt[SP,t] - Zt[SP,, t * incZt] %*% at[,t]
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans,
intone, intone, blas_m,
dblminusone, Zt_tSP, intone,
at, blas_m,
dblone, &vt_output[SP + d * t], intone);
// Step 2 - Function of Covariance Matrix:
// Compute Ft = Zt[SP,,t * incZt] %*% Pt %*% t(Zt[SP,,t * incZt]) + diag(GGt)[SP]
// First, Let us calculate:
// Pt %*% t(Zt[SP,,t * incZt])
// because we use this result twice
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasTrans,
blas_m, intone, blas_m,
dblone, Pt, blas_m,
Zt_tSP, intone,
dblzero, tmpmxSP, blas_m);
// Ft = GGt[SP]
Ft = GGt[SP + (d * t * incGGt)];
// Ft = Zt[SP,,t*incZt] %*% tmpmxSP + Ft
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans,
intone, intone, blas_m,
dblone, Zt_tSP, intone,
tmpmxSP, blas_m,
dblone, &Ft, intone);
// Step 3 - Calculate the Kalman Gain:
// Compute Kt = Pt %*% t(Zt[SP,,i * incZt]) %*% (1/Ft)
// Inv Ft:
Ft_inv_output[SP + d * t] = 1 / Ft;
// Kt is an m x 1 matrix
// We already have tmpSPxm:
// Kt = tmpmxSP %*% tmpFtinv
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans,
blas_m, intone, intone,
dblone, tmpmxSP, blas_m,
&Ft_inv_output[SP + d * t], intone,
dblzero, &Kt_output[m_x_d * t + (m * SP)], blas_m);
// Step 4 - Correct State Vector mean and Covariance:
// Correction to att based upon prediction error:
// att = Kt %*% V + att
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans,
blas_m, intone, intone,
dblone, &Kt_output[m_x_d * t + (m * SP)], blas_m,
&vt_output[SP + d * t], intone,
dblone, at, blas_m);
// Correction to covariance based upon Kalman Gain:
// ptt = ptt - ptt %*% t(Z[SP,,i * incZt]) %*% t(Ktt)
// ptt = ptt - tempmxSP %*% t(Ktt)
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasTrans,
blas_m, blas_m, intone,
dblminusone, tmpmxSP, blas_m,
&Kt_output[m_x_d * t + (m * SP)], blas_m,
dblone, Pt, blas_m);
// Step 5 - Update Log-Likelihood Score:
*loglik -= 0.5 * (log(Ft) + (vt_output[SP + d * t] * vt_output[SP + d * t] * Ft_inv_output[SP + d * t]));
#ifdef DEBUGMODE
printf("\n Log-Likelihood: %f \n", *loglik);
#endif
}
}
/*********************************************************************************/
/* ---------- ---------- ------- prediction step -------- ---------- ---------- */
/*********************************************************************************/
/* ---------------------------------------------------------------------- */
/* at[,t + 1] = dt[,t * incdt] + Tt[,,t * incTt] %*% att[,t] */
/* ---------------------------------------------------------------------- */
#ifdef DEBUGMODE
print_array(at, 1, m, "at:");
#endif
// tmpmxSP = Tt[,,i * incTt] %*% att[,i]
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans,
blas_m, intone, blas_m,
dblone, &Tt[m_x_m * t * incTt], blas_m,
at, blas_m,
dblzero, tmpmxSP, blas_m);
// save att:
cblas_dcopy(blas_m, at, intone, &att_output[m * t], intone);
// save ptt:
cblas_dcopy(m_x_m, Pt, intone, &Ptt_output[m_x_m * t], intone);
/* at[,t + 1] = dt[,t] + at[,t] */
cblas_dcopy(blas_m, &dt[m * t * incdt], intone, at, intone);
cblas_daxpy(blas_m, dblone, tmpmxSP, intone, at, intone);
#ifdef DEBUGMODE
print_array(at, 1, m, "atp1:");
print_array(Pt, m, m, "Pt:");
#endif
/* ------------------------------------------------------------------------------------- */
/* Pt[,,t + 1] = Tt[,,t * incTt] %*% Ptt[,,t] %*% t(Tt[,,t * incTt]) + HHt[,,t * incHHt] */
/* ------------------------------------------------------------------------------------- */
/* tmpmxm = Ptt[,,i] %*% t(Tt[,,i * incTt]) */
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasTrans,
blas_m, blas_m, blas_m,
dblone, Pt, blas_m,
&Tt[m_x_m * t * incTt], blas_m,
dblzero, tmpmxm, blas_m);
/* Pt[,,i + 1] = HHt[,,i * incHHt] */
cblas_dcopy(m_x_m, &HHt[m_x_m * t * incHHt], intone, Pt, intone);
#ifdef DEBUGMODE
print_array(&HHt[m_x_m * t * incHHt], m, m, "HHt:");
#endif
/* Pt[,,i + 1] = Tt[,,i * incTt] %*% tmpmxm + Pt[,,i + 1] */
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans,
blas_m, blas_m, blas_m,
dblone, &Tt[m_x_m * t * incTt], blas_m,
tmpmxm, blas_m,
dblone, Pt, blas_m);
#ifdef DEBUGMODE
print_array(at, 1, m, "at:");
print_array(Pt, m, m, "Pt:");
printf("\n---------- iteration %i ----------\n", t + 1);
#endif
// save at:
cblas_dcopy(blas_m, at, intone, &at_output[m * t + m], intone);
// save pt:
cblas_dcopy(m_x_m, Pt, intone, &Pt_output[m_x_m * t + m_x_m], intone);
// Iterate:
t++;
}
/**************************************************************/
/* ---------- ---------- end recursions ---------- ---------- */
/**************************************************************/
// Update the final Log-Likelihood Score:
*loglik -= 0.5 * N_obs * log(2 * M_PI);
// Memory clean - vectors / matrices:
free(tmpmxSP);
free(tmpmxm);
free(positions);
free(yt_temp);
free(ct_temp);
free(Zt_temp);
free(GGt_temp);
free(Zt_t);
free(Zt_tSP);
free(NAindices);
free(at);
}