-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal_evaluation.py
144 lines (105 loc) · 4.58 KB
/
local_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
import time
import os
from citylearn.citylearn import CityLearnEnv
"""
This is only a reference script provided to allow you
to do local evaluation. The evaluator **DOES NOT**
use this script for orchestrating the evaluations.
"""
from agents.user_agent import SubmissionAgent
from rewards.user_reward import SubmissionReward
class WrapperEnv:
"""
Env to wrap provide Citylearn Env data without providing full env
Preventing attribute access outside of the available functions
"""
def __init__(self, env_data):
self.observation_names = env_data['observation_names']
self.action_names = env_data['action_names']
self.observation_space = env_data['observation_space']
self.action_space = env_data['action_space']
self.time_steps = env_data['time_steps']
self.seconds_per_time_step = env_data['seconds_per_time_step']
self.random_seed = env_data['random_seed']
self.buildings_metadata = env_data['buildings_metadata']
self.episode_tracker = env_data['episode_tracker']
def get_metadata(self):
return {'buildings': self.buildings_metadata}
def create_citylearn_env(config, reward_function):
env = CityLearnEnv(config.SCHEMA, reward_function=reward_function)
env_data = dict(
observation_names=env.observation_names,
action_names=env.action_names,
observation_space=env.observation_space,
action_space=env.action_space,
time_steps=env.time_steps,
random_seed=None,
episode_tracker=None,
seconds_per_time_step=None,
buildings_metadata=env.get_metadata()['buildings']
)
wrapper_env = WrapperEnv(env_data)
return env, wrapper_env
def update_power_outage_random_seed(env: CityLearnEnv, random_seed: int) -> CityLearnEnv:
"""Update random seed used in generating power outage signals.
Used to optionally update random seed for stochastic power outage model in all buildings.
Random seeds should be updated before calling :py:meth:`citylearn.citylearn.CityLearnEnv.reset`.
"""
for b in env.buildings:
b.stochastic_power_outage_model.random_seed = random_seed
return env
def evaluate(config):
print("Starting local evaluation")
env, wrapper_env = create_citylearn_env(config, SubmissionReward)
print("Env Created")
agent = SubmissionAgent(wrapper_env)
observations = env.reset()
agent_time_elapsed = 0
step_start = time.perf_counter()
actions = agent.register_reset(observations)
agent_time_elapsed += time.perf_counter() - step_start
episodes_completed = 0
num_steps = 0
interrupted = False
episode_metrics = []
try:
while True:
### This is only a reference script provided to allow you
### to do local evaluation. The evaluator **DOES NOT**
### use this script for orchestrating the evaluations.
observations, _, done, _ = env.step(actions)
if not done:
step_start = time.perf_counter()
actions = agent.predict(observations)
agent_time_elapsed += time.perf_counter() - step_start
else:
episodes_completed += 1
metrics_df = env.evaluate_citylearn_challenge()
episode_metrics.append(metrics_df)
print(f"Episode complete: {episodes_completed} | Latest episode metrics: {metrics_df}", )
# Optional: Uncomment line below to update power outage random seed
# from what was initially defined in schema
env = update_power_outage_random_seed(env, 90000)
observations = env.reset()
step_start = time.perf_counter()
actions = agent.predict(observations)
agent_time_elapsed += time.perf_counter() - step_start
num_steps += 1
if num_steps % 1000 == 0:
print(f"Num Steps: {num_steps}, Num episodes: {episodes_completed}")
if episodes_completed >= config.num_episodes:
break
except KeyboardInterrupt:
print("========================= Stopping Evaluation =========================")
interrupted = True
if not interrupted:
print("=========================Completed=========================")
print(f"Total time taken by agent: {agent_time_elapsed}s")
if __name__ == '__main__':
class Config:
data_dir = './data/'
SCHEMA = os.path.join(data_dir, 'schemas/warm_up/schema.json')
num_episodes = 1
config = Config()
evaluate(config)