forked from jal278/novelty-search-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnoveltyexp.cpp
694 lines (554 loc) · 21 KB
/
noveltyexp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
#include "experiments.h"
#include "noveltyset.h"
#include "datarec.h"
#include "maze.h"
#include "histogram.h"
//#define DEBUG_OUTPUT 1
#include <algorithm>
#include <vector>
#include <cstring>
#include <iostream>
#include <fstream>
#include <math.h>
using namespace std;
static char output_dir[30]="";
static Environment* env;
static int param=-1;
//used for discretization studies
double discretize(double x,long bins,double low, double high)
{
double norm = x-low;
double binsize = (high-low)/bins;
int bin = (int)(norm/binsize);
if(bin==bins)
bin--;
double result = (double)binsize*bin+binsize/2.0+low;
return result;
}
long powerof2(int num)
{
long x=1;
if(num==0) return 1;
for(int y=0;y<num;y++)
x*=2;
return x;
}
//novelty metric for maze simulation
float maze_novelty_metric(noveltyitem* x,noveltyitem* y)
{
float diff = 0.0;
for(int k=0;k<(int)x->data.size();k++)
{
diff+=hist_diff(x->data[k],y->data[k]);
}
return diff;
}
//fitness simulation of maze navigation
Population *maze_fitness_realtime(char* outputdir,const char *mazefile,int par) {
Population *pop;
Genome *start_genome;
char curword[20];
int id;
//create new maze environment
env=new Environment(mazefile);
if(outputdir!=NULL) strcpy(output_dir,outputdir);
param=par;
//starter gene file
ifstream iFile("mazestartgenes",ios::in);
cout<<"START MAZE NAVIGATOR FITNESS REAL-TIME EVOLUTION VALIDATION"<<endl;
cout<<"Reading in the start genome"<<endl;
//Read in the start Genome
iFile>>curword;
iFile>>id;
cout<<"Reading in Genome id "<<id<<endl;
start_genome=new Genome(id,iFile);
iFile.close();
cout<<"Start Genome: "<<start_genome<<endl;
//Spawn the Population from starter gene
cout<<"Spawning Population off Genome"<<endl;
pop=new Population(start_genome,NEAT::pop_size);
cout<<"Verifying Spawned Pop"<<endl;
pop->verify();
//Start the evolution loop using rtNEAT method calls
maze_fitness_realtime_loop(pop);
//clean up
delete env;
return pop;
}
//actual rtNEAT loop for fitness run of maze navigation
int maze_fitness_realtime_loop(Population *pop) {
bool firstflag=false; //indicates whether maze has been solved yet
int indiv_counter=0;
vector<Organism*>::iterator curorg;
vector<Species*>::iterator curspecies;
vector<Species*>::iterator curspec; //used in printing out debug info
vector<Species*> sorted_species; //Species sorted by max fit org in Species
data_rec Record; //holds run information
int count=0;
int pause;
//Real-time evolution variables
int offspring_count;
Organism *new_org;
//We try to keep the number of species constant at this number
int num_species_target=NEAT::pop_size/15;
//This is where we determine the frequency of compatibility threshold adjustment
int compat_adjust_frequency = NEAT::pop_size/20;
if (compat_adjust_frequency < 1)
compat_adjust_frequency = 1;
//Initially, we evaluate the whole population
//Evaluate each organism on a test
for(curorg=(pop->organisms).begin();curorg!=(pop->organisms).end();++curorg) {
//shouldn't happen
if (((*curorg)->gnome)==0) {
cout<<"ERROR EMPTY GEMOME!"<<endl;
cin>>pause;
}
//map the novelty point to each individual (this runs the maze simulation)
(*curorg)->noveltypoint = maze_novelty_map((*curorg));
(*curorg)->noveltypoint->indiv_number = indiv_counter;
indiv_counter++;
(*curorg)->fitness = (*curorg)->noveltypoint->fitness;
}
//Get ready for real-time loop
//Rank all the organisms from best to worst in each species
pop->rank_within_species();
//Assign each species an average fitness
//This average must be kept up-to-date by rtNEAT in order to select species probabailistically for reproduction
pop->estimate_all_averages();
cout <<"Entering real time loop..." << endl;
//Now create offspring one at a time, testing each offspring,
// and replacing the worst with the new offspring if its better
//run for 2000 generations (250*2000 = 500,000 evaluations)
for
(offspring_count=0;offspring_count<NEAT::pop_size*2001;offspring_count++)
{
if(offspring_count % (NEAT::pop_size*NEAT::print_every) == 0 )
{
cout << offspring_count << endl;
char fname[30];
sprintf(fname,"%sfit_rtgen_%d",output_dir,offspring_count/250);
pop->print_to_file_by_species(fname);
}
//Every pop_size reproductions, adjust the compat_thresh to better match the num_species_targer
//and reassign the population to new species
if (offspring_count % compat_adjust_frequency == 0) {
count++;
#ifdef DEBUG_OUTPUT
cout << "Adjusting..." << endl;
#endif
int num_species = pop->species.size();
double compat_mod=0.1; //Modify compat thresh to control speciation
// This tinkers with the compatibility threshold
if (num_species < num_species_target) {
NEAT::compat_threshold -= compat_mod;
}
else if (num_species > num_species_target)
NEAT::compat_threshold += compat_mod;
if (NEAT::compat_threshold < 0.3)
NEAT::compat_threshold = 0.3;
#ifdef DEBUG_OUTPUT
cout<<"compat_thresh = "<<NEAT::compat_threshold<<endl;
#endif
//Go through entire population, reassigning organisms to new species
for (curorg = (pop->organisms).begin(); curorg != pop->organisms.end(); ++curorg) {
pop->reassign_species(*curorg);
}
}
//For printing only
#ifdef DEBUG_OUTPUT
for(curspec=(pop->species).begin();curspec!=(pop->species).end();curspec++) {
cout<<"Species "<<(*curspec)->id<<" size"<<(*curspec)->organisms.size()<<" average= "<<(*curspec)->average_est<<endl;
}
cout<<"Pop size: "<<pop->organisms.size()<<endl;
#endif
//Here we call two rtNEAT calls:
//1) choose_parent_species() decides which species should produce the next offspring
//2) reproduce_one(...) creates a single offspring fromt the chosen species
new_org=(pop->choose_parent_species())->reproduce_one(offspring_count,pop,pop->species);
#ifdef DEBUG_OUTPUT
cout<<"Evaluating new baby: "<<endl;
#endif
//create record for new individual
data_record *newrec = new data_record();
newrec->indiv_number=indiv_counter;
//evaluate new individual
new_org->noveltypoint = maze_novelty_map(new_org,newrec);
new_org->noveltypoint->indiv_number = indiv_counter;
//grab novelty
newrec->ToRec[RECSIZE-2]=new_org->noveltypoint->novelty;
//set organism's fitness
new_org->fitness = new_org->noveltypoint->fitness;
indiv_counter++;
#ifdef DEBUG_OUTPUT
cout << "Fitness: " << new_org->fitness << endl;
cout << "Novelty: " << new_org->noveltypoint->novelty << endl;
cout << "RFit: " << new_org->noveltypoint->fitness << endl;
#endif
//add record of new individual to storage
Record.add_new(newrec);
//Now we reestimate the baby's species' fitness
new_org->species->estimate_average();
//Remove the worst organism
pop->remove_worst();
//store first solution organism
if(!firstflag && newrec->ToRec[3]>0.0) {
firstflag=true;
char filename[30];
sprintf(filename,"%sfit_rtgen_first",output_dir);
pop->print_to_file_by_species(filename);
cout << "Maze solved by indiv# " << indiv_counter << endl;
}
}
//finish up, write out the record and the final generation
cout << "COMPLETED..." << endl;
char filename[30];
sprintf(filename,"%srecord.dat",output_dir);
Record.serialize(filename);
sprintf(filename,"%sfit_rtgen_final",output_dir);
pop->print_to_file_by_species(filename);
return 0;
}
//novelty maze navigation run
Population *maze_novelty_realtime(char* outputdir,const char* mazefile,int par) {
Population *pop;
Genome *start_genome;
char curword[20];
int id;
//create new maze environment
env=new Environment(mazefile);
param=par;
if(outputdir!=NULL) strcpy(output_dir,outputdir);
//starter genes file
ifstream iFile("mazestartgenes",ios::in);
cout<<"START MAZE NAVIGATOR NOVELTY REAL-TIME EVOLUTION VALIDATION"<<endl;
cout<<"Reading in the start genome"<<endl;
//Read in the start Genome
iFile>>curword;
iFile>>id;
cout<<"Reading in Genome id "<<id<<endl;
start_genome=new Genome(id,iFile);
iFile.close();
cout<<"Start Genome: "<<start_genome<<endl;
//Spawn the Population from starter gene
cout<<"Spawning Population off Genome"<<endl;
pop=new Population(start_genome,NEAT::pop_size);
cout<<"Verifying Spawned Pop"<<endl;
pop->verify();
//Start the evolution loop using rtNEAT method calls
maze_novelty_realtime_loop(pop);
//clean up
delete env;
return pop;
}
//actual rtNEAT loop for novelty maze navigation runs
int maze_novelty_realtime_loop(Population *pop) {
bool firstflag=false; //indicates whether the maze has been solved yet
vector<Organism*>::iterator curorg;
vector<Species*>::iterator curspecies;
vector<Species*>::iterator curspec; //used in printing out debug info
vector<Species*> sorted_species; //Species sorted by max fit org in Species
float archive_thresh=6.0; //initial novelty threshold
//archive of novel behaviors
noveltyarchive archive(archive_thresh,*maze_novelty_metric);
data_rec Record; //stores run information
int count=0;
int pause;
//Real-time evolution variables
int offspring_count;
Organism *new_org;
//We try to keep the number of species constant at this number
int num_species_target=NEAT::pop_size/15;
//This is where we determine the frequency of compatibility threshold adjustment
int compat_adjust_frequency = NEAT::pop_size/20;
if (compat_adjust_frequency < 1)
compat_adjust_frequency = 1;
//Initially, we evaluate the whole population
//Evaluate each organism on a test
int indiv_counter=0;
for(curorg=(pop->organisms).begin();curorg!=(pop->organisms).end();++curorg) {
//shouldn't happen
if (((*curorg)->gnome)==0) {
cout<<"ERROR EMPTY GEMOME!"<<endl;
cin>>pause;
}
//evaluate each individual
(*curorg)->noveltypoint = maze_novelty_map((*curorg));
(*curorg)->noveltypoint->indiv_number=indiv_counter;
indiv_counter++;
}
//assign fitness scores based on novelty
archive.evaluate_population(pop,true);
//add to archive
archive.evaluate_population(pop,false);
//Get ready for real-time loop
//Rank all the organisms from best to worst in each species
pop->rank_within_species();
//Assign each species an average fitness
//This average must be kept up-to-date by rtNEAT in order to select species probabailistically for reproduction
pop->estimate_all_averages();
cout <<"Entering real time loop..." << endl;
//Now create offspring one at a time, testing each offspring,
// and replacing the worst with the new offspring if its better
for
(offspring_count=0;offspring_count<NEAT::pop_size*2000;offspring_count++)
{
//only continue past generation 1000 if not yet solved
if(offspring_count>=pop_size*1000 && firstflag)
break;
//end of generation
if(offspring_count % (NEAT::pop_size*1) == 0)
{
archive.end_of_gen_steady(pop);
//archive.add_randomly(pop);
archive.evaluate_population(pop,false);
cout << "ARCHIVE SIZE:" <<
archive.get_set_size() << endl;
}
//write out current generation and fittest individuals
if( offspring_count % (NEAT::pop_size*NEAT::print_every) == 0 )
{
cout << offspring_count << endl;
char fname[30];
sprintf(fname,"%sfittest_%d",output_dir,offspring_count/250);
archive.serialize_fittest(fname);
sprintf(fname,"%srtgen_%d",output_dir,offspring_count/250);
pop->print_to_file_by_species(fname);
}
//Every pop_size reproductions, adjust the compat_thresh to better match the num_species_targer
//and reassign the population to new species
if (offspring_count % compat_adjust_frequency == 0) {
count++;
#ifdef DEBUG_OUTPUT
cout << "Adjusting..." << endl;
#endif
//update fittest individual list
archive.update_fittest(pop);
//refresh generation's novelty scores
archive.evaluate_population(pop,true);
int num_species = pop->species.size();
double compat_mod=0.1; //Modify compat thresh to control speciation
// This tinkers with the compatibility threshold
if (num_species < num_species_target) {
NEAT::compat_threshold -= compat_mod;
}
else if (num_species > num_species_target)
NEAT::compat_threshold += compat_mod;
if (NEAT::compat_threshold < 0.3)
NEAT::compat_threshold = 0.3;
#ifdef DEBUG_OUTPUT
cout<<"compat_thresh = "<<NEAT::compat_threshold<<endl;
#endif
//Go through entire population, reassigning organisms to new species
for (curorg = (pop->organisms).begin(); curorg != pop->organisms.end(); ++curorg) {
pop->reassign_species(*curorg);
}
}
//For printing only
#ifdef DEBUG_OUTPUT
for(curspec=(pop->species).begin();curspec!=(pop->species).end();curspec++) {
cout<<"Species "<<(*curspec)->id<<" size"<<(*curspec)->organisms.size()<<" average= "<<(*curspec)->average_est<<endl;
}
cout<<"Pop size: "<<pop->organisms.size()<<endl;
#endif
//Here we call two rtNEAT calls:
//1) choose_parent_species() decides which species should produce the next offspring
//2) reproduce_one(...) creates a single offspring fromt the chosen species
new_org=(pop->choose_parent_species())->reproduce_one(offspring_count,pop,pop->species);
//Now we evaluate the new individual
//Note that in a true real-time simulation, evaluation would be happening to all individuals at all times.
//That is, this call would not appear here in a true online simulation.
#ifdef DEBUG_OUTPUT
cout<<"Evaluating new baby: "<<endl;
#endif
data_record* newrec=new data_record();
newrec->indiv_number=indiv_counter;
//evaluate individual, get novelty point
new_org->noveltypoint = maze_novelty_map(new_org,newrec);
new_org->noveltypoint->indiv_number = indiv_counter;
//calculate novelty of new individual
archive.evaluate_individual(new_org,pop);
newrec->ToRec[4] = archive.get_threshold();
newrec->ToRec[5] = archive.get_set_size();
newrec->ToRec[RECSIZE-2] = new_org->noveltypoint->novelty;
//add record of new indivdual to storage
Record.add_new(newrec);
indiv_counter++;
//update fittest list
archive.update_fittest(new_org);
#ifdef DEBUG_OUTPUT
cout << "Fitness: " << new_org->fitness << endl;
cout << "Novelty: " << new_org->noveltypoint->novelty << endl;
cout << "RFit: " << new_org->noveltypoint->fitness << endl;
#endif
//Now we reestimate the baby's species' fitness
new_org->species->estimate_average();
//write out the first individual to solve maze
if(!firstflag && newrec->ToRec[3]>0.0) {
firstflag=true;
char filename[30];
sprintf(filename,"%srtgen_first",output_dir);
pop->print_to_file_by_species(filename);
cout << "Maze solved by indiv# " << indiv_counter << endl;
// file: Write successful evaluation# to file **TPR**
// file2: Write archive size on success to file **TPR**
std::ofstream file;
std::ofstream file2;
file.open("evaluations.txt", std::ios::out | std::ios::app);
file2.open("arcSizes.txt", std::ios::out | std::ios::app);
if (file.fail() || file2.fail()) { // error checking
throw std::ios_base::failure(std::strerror(errno));
}
// Offspring_count doubles as evaluation#. Split by whitespace.
file << offspring_count << " " << std::endl;
file2 << archive.get_set_size() << " " << std::endl;
break;
}
//Remove the worst organism
pop->remove_worst();
}
//write out run information, archive, and final generation
cout << "COMPLETED...";
char filename[30];
sprintf(filename,"%srecord.dat",output_dir);
char fname[30];
sprintf(fname,"%srtarchive.dat",output_dir);
archive.Serialize(fname);
Record.serialize(filename);
sprintf(fname,"%sfittest_final",output_dir);
archive.serialize_fittest(fname);
sprintf(fname,"%srtgen_final",output_dir);
pop->print_to_file_by_species(fname);
return 0;
}
//initialize the maze simulation
Environment* mazesimIni(Environment* tocopy,Network *net, vector< vector<float> > &dc)
{
double inputs[20];
Environment *newenv= new Environment(*tocopy);
//flush the neural net
net->flush();
//update the maze
newenv->Update();
//create neural net inputs
newenv->generate_neural_inputs(inputs);
//load into neural net
net->load_sensors(inputs);
//propogate input through net
for(int i=0;i<10;i++)
net->activate();
return newenv;
}
//execute a timestep of the maze simulation evaluation
double mazesimStep(Environment* newenv,Network *net,vector< vector<float> > &dc)
{
double inputs[20];
newenv->generate_neural_inputs(inputs);
net->load_sensors(inputs);
net->activate();
//use the net's outputs to change heading and velocity of navigator
newenv->interpret_outputs(net->outputs[0]->activation,net->outputs[1]->activation);
//update the environment
newenv->Update();
double dist = newenv->distance_to_target();
if(dist<=1) dist=1;
double fitness = 5.0/dist; //used for accumulated fitness (obselete)
return fitness;
}
double mazesim(Network* net, vector< vector<float> > &dc, data_record *record)
{
vector<float> data;
int timesteps=400;
int stepsize=1000;
double fitness=0.0;
Environment *newenv;
newenv=mazesimIni(env,net,dc);
//data collection vector initialization
dc.clear();
dc.push_back(data);
dc[0].reserve(param*2+20);
/*ENABLE FOR ADDT'L INFO STUDIES*/
/*
if(param>0)
{
stepsize=timesteps/param;
}
/* */
for(int i=0;i<timesteps;i++)
{
fitness+=mazesimStep(newenv,net,dc);
//if taking additional samples, collect during run
if((timesteps-i-1)%stepsize==0)
{
dc[0].push_back(newenv->hero.location.x);
dc[0].push_back(newenv->hero.location.y);
}
}
//calculate fitness of individual as closeness to target
fitness=300.0 - newenv->distance_to_target();
if(fitness<0.1) fitness=0.1;
//fitness as novelty studies
//data.push_back(fitness);
float x=newenv->hero.location.x;
float y=newenv->hero.location.y;
/* ENABLE FOR DISCRETIZATION STUDIES
if(param>0)
{
long bins=powerof2(param);
x=discretize(x,bins,0.0,200.0);
y=discretize(y,bins,0.0,200.0);
}
*/
if(param<=0)
{
//novelty point is the ending location of the navigator
dc[0].push_back(x);
dc[0].push_back(y);
}
if(record!=NULL)
{
record->ToRec[0]=fitness;
record->ToRec[1]=newenv->hero.location.x;
record->ToRec[2]=newenv->hero.location.y;
record->ToRec[3]=newenv->reachgoal;
/*ADDTL INFO RECORDING */
if(param>=0)
{
for(int x=0;x<(int)dc[0].size();x++)
{
if((10+x)<RECSIZE)
record->ToRec[10+x]=dc[0][x];
}
}
/*ADDTL INFO RECORDING */
}
delete newenv;
return fitness;
}
//evaluates an individual and stores the novelty point
noveltyitem* maze_novelty_map(Organism *org,data_record* record)
{
noveltyitem *new_item = new noveltyitem;
new_item->genotype=new Genome(*org->gnome);
new_item->phenotype=new Network(*org->net);
vector< vector<float> > gather;
double fitness;
static float highest_fitness=0.0;
fitness=mazesim(org->net,gather,record);
if(fitness>highest_fitness)
highest_fitness=fitness;
//keep track of highest fitness so hard in record
if(record!=NULL)
{
/*
record->ToRec[19]=org->gnome->parent1;
record->ToRec[18]=org->gnome->parent2;
record->ToRec[17]=org->gnome->struct_change;
*/
record->ToRec[RECSIZE-1]=highest_fitness;
}
//push back novelty characterization
new_item->data.push_back(gather[0]);
//set fitness (this is 'real' objective-based fitness, not novelty)
new_item->fitness=fitness;
return new_item;
}