diff --git a/latest/examples/generated/UserGuide/getting_started/index.html b/latest/examples/generated/UserGuide/getting_started/index.html index 51c29fd..6961633 100644 --- a/latest/examples/generated/UserGuide/getting_started/index.html +++ b/latest/examples/generated/UserGuide/getting_started/index.html @@ -708,6 +708,8 @@
Tip: Setting t(table) = from_query(table)
will save some keystrokes. This means after saving the results of db_table
you can start all chains/refer to the data with `t(table)`` –-
This page was generated using Literate.jl.
diff --git a/latest/examples/generated/UserGuide/ibis_comp/index.html b/latest/examples/generated/UserGuide/ibis_comp/index.html index 316d669..d652664 100644 --- a/latest/examples/generated/UserGuide/ibis_comp/index.html +++ b/latest/examples/generated/UserGuide/ibis_comp/index.html @@ -778,7 +778,7 @@TidierDB and Ibis use head
/@head
to preview the first rows of a dataset.
TidierDB and Ibis use head
/@head
to preview the first rows of a dataset. Ibis
mtcars.head(6)
┏━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━┓
@@ -794,6 +794,7 @@ Previewing the data@chain t(mtcars) @head(6) @collect
6×12 DataFrame
@@ -810,7 +811,7 @@ Previewing the dataFiltering¤
-The example below demonstrates how to filter using multiple criteria in both Ibis and TidierData
+The example below demonstrates how to filter using multiple criteria in both Ibis and TidierData Ibis
mtcars.filter(((_.mpg > 22) & (_.drat > 4) | (_.hp == 113)))
┏━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━┓
@@ -846,7 +847,7 @@ FilteringCreating new columns¤
-Both TidierDB and Ibis use mutate
/@mutate
to add new columns
+Both TidierDB and Ibis use mutate
/@mutate
to add new columns Ibis
(
mtcars
.mutate(kpg = _.mpg * 1.61)
@@ -871,6 +872,7 @@ Creating new columns@chain t(mtcars) begin
@mutate(kpg = mpg * 1.61)
@select(model, kpg)
@@ -899,7 +901,7 @@ Creating new columnsSorting columns¤
-Ibis uses order_by
similar to SQLs ORDER BY
+Ibis uses order_by
similar to SQLs ORDER BY
Ibis
mtcars.order_by(_.mpg)
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━┓
@@ -920,7 +922,7 @@ Sorting columns@chain t(mtcars) @arrange(mpg) @collect
32×12 DataFrame
@@ -945,7 +947,7 @@ Sorting columnsSelecting columns¤
-In Ibis, columns must be prefixed with the table name, or in this case _
, or they can be given as a string. Finally to using helper functions like startswith
requires importing selectors as above.
+In Ibis, columns must be prefixed with the table name, or in this case _
, or they can be given as a string. Finally to using helper functions like startswith
requires importing selectors as above. Ibis
mtcars.select(s.startswith("m"), "drat", _.wt)
┏━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━┓
@@ -966,11 +968,10 @@ Selecting columns@chain t(mtcars) @select(starts_with("m"), "drat", wt) @collect
-32×2 DataFrame
-32×4 DataFrame
+32×4 DataFrame
Row │ model mpg drat wt
│ String? Float64? Float64? Float64?
─────┼─────────────────────────────────────────────────
@@ -992,7 +993,7 @@ Selecting columnsMulti step queries and summarizing¤
-Aggregating data is done with aggregate
in ibis and @summarize
in TidierDB. There is a slight difference in grouping data. Ibis uses by =
within the aggregate
call vs TidierDB adheres to @group_by
convention
+Aggregating data is done with aggregate
in Ibis and @summarize
in TidierDB. To group data, Ibis uses by =
within the aggregate
call vs TidierDB adheres to @group_by
convention Ibis
mtcars.aggregate(
total_hp=_.hp.sum(),
avg_hp=_.hp.mean(),
@@ -1009,7 +1010,7 @@ Multi step queries and summarizing
-In TidierDB, @filter
will automatically determine whether the criteria belong in a WHERE or HAVING in SQL clause.
+In TidierDB, @filter
will automatically determine whether the criteria belong in a WHERE
or HAVING
SQL clause. TidierDB
@chain t(mtcars) begin
@group_by(cyl)
@summarize(total_hp = sum(hp),
@@ -1028,7 +1029,7 @@ Multi step queries and summarizing
Renaming columns¤
-Both tools use rename
/@rename to rename columns
+Both tools use rename
/@rename to rename columns Ibis
mtcars.rename(make_model = "model").select(_.make_model)
┏━━━━━━━━━━━━━━━━━━━┓
@@ -1049,6 +1050,7 @@ Renaming columns@chain t(mtcars) @rename(model_make = model) @select(model_make) @collect
32×1 DataFrame
diff --git a/latest/reference/index.html b/latest/reference/index.html
index 050c192..16704c9 100644
--- a/latest/reference/index.html
+++ b/latest/reference/index.html
@@ -721,7 +721,7 @@ Reference - Exported functionsjulia> db = connect(duckdb())
DuckDB.Connection(":memory:")
-
+
#
TidierDB.copy_to
— Method.
copy_to(conn, df_or_path, "name")
@@ -739,7 +739,7 @@ Reference - Exported functionsjulia> copy_to(db, df, "test");
-
+
#
TidierDB.db_table
— Function.
db_table(database, table_name, athena_params, delta = false, iceberg = false)
@@ -779,7 +779,7 @@ Reference - Exported functions 3 │ value BIGINT 1 df_mem
4 │ percent DOUBLE 1 df_mem, false, DuckDB.Connection(":memory:"), TidierDB.CTE[], 0, nothing)
-
+
#
TidierDB.@anti_join
— Macro.
@anti_join(sql_query, join_table, new_table_col, orignal_table_col)
@@ -822,7 +822,7 @@ Reference - Exported functions 4 │ AH aa 3 0.8
5 │ AJ aa 5 1.0
-
+
#
TidierDB.@arrange
— Macro.
@arrange(sql_query, columns...)
@@ -862,7 +862,7 @@ Reference - Exported functions 9 │ AJ aa 5 1.0
10 │ AE bb 5 0.5
-
+
#
TidierDB.@collect
— Macro.
@collect(sql_query, stream = false)
@@ -899,7 +899,7 @@ Reference - Exported functions 9 │ AI bb 4 0.9
10 │ AJ aa 5 1.0
-
+
#
TidierDB.@count
— Macro.
@count(sql_query, columns...)
@@ -932,7 +932,7 @@ Reference - Exported functions 1 │ aa 5
2 │ bb 5
-
+
#
TidierDB.@distinct
— Macro.
@distinct(sql_query, columns...)
@@ -985,7 +985,7 @@ Reference - Exported functions 9 │ AI bb 4 0.9
10 │ AJ aa 5 1.0
-
+
#
TidierDB.@filter
— Macro.
@filter(sql_query, conditions...)
@@ -1041,7 +1041,7 @@ Reference - Exported functions 1 │ aa 0.6
2 │ bb 0.5
-
+
#
TidierDB.@full_join
— Macro.
@inner_join(sql_query, join_table, new_table_col, orignal_table_col)
@@ -1091,7 +1091,7 @@ Reference - Exported functions 11 │ missing missing missing missing AK Y 68
12 │ missing missing missing missing AM X 74
-
+
#
TidierDB.@group_by
— Macro.
@group_by(sql_query, columns...)
@@ -1124,7 +1124,7 @@ Reference - Exported functions 1 │ aa
2 │ bb
-
+
#
TidierDB.@head
— Macro.
@head(sql_query, value)
@@ -1155,7 +1155,7 @@ Reference - Exported functions─────┼────────────────────────────────────
1 │ AA bb 1 0.1
-
+
#
TidierDB.@inner_join
— Macro.
@inner_join(sql_query, join_table, new_table_col, orignal_table_col)
@@ -1198,7 +1198,7 @@ Reference - Exported functions 4 │ AG bb 2 0.7 AG Y 83
5 │ AI bb 4 0.9 AI X 95
-
+
#
TidierDB.@interpolate
— Macro.
@interpolate(args...)
@@ -1246,7 +1246,7 @@ Reference - Exported functions─────┼───────────────────────────
1 │ AA 1 0.1
-
+
#
TidierDB.@left_join
— Macro.
@left_join(sql_query, join_table, new_table_col, orignal_table_col)
@@ -1294,7 +1294,7 @@ Reference - Exported functions 9 │ AH aa 3 0.8 missing missing missing
10 │ AJ aa 5 1.0 missing missing missing
-
+
#
TidierDB.@mutate
— Macro.
@mutate(sql_query, exprs...)
@@ -1334,7 +1334,7 @@ Reference - Exported functions 9 │ AI bb 16 0.9 0.81
10 │ AJ aa 20 1.0 1.0
-
+
#
TidierDB.@rename
— Macro.
@rename(sql_query, renamings...)
@@ -1371,7 +1371,7 @@ Reference - Exported functions 9 │ AI bb 4 0.9
10 │ AJ aa 5 1.0
-
+
#
TidierDB.@right_join
— Macro.
@right_join(sql_query, join_table, new_table_col, orignal_table_col)
@@ -1416,7 +1416,7 @@ Reference - Exported functions 6 │ missing missing missing missing AK Y 68
7 │ missing missing missing missing AM X 74
-
+
#
TidierDB.@select
— Macro.
@select(sql_query, columns)
@@ -1475,7 +1475,7 @@ Reference - Exported functions 9 │ 4 0.9
10 │ 5 1.0
-
+
#
TidierDB.@semi_join
— Macro.
@semi_join(sql_query, join_table, new_table_col, orignal_table_col)
@@ -1518,7 +1518,7 @@ Reference - Exported functions 4 │ AG bb 2 0.7
5 │ AI bb 4 0.9
-
+
#
TidierDB.@slice_max
— Macro.
@slice_max(sql_query, column, n = 1)
@@ -1557,7 +1557,7 @@ Reference - Exported functions 1 │ AE bb 5 0.5 1
2 │ AJ aa 5 1.0 1
-
+
#
TidierDB.@slice_min
— Macro.
@slice_min(sql_query, column, n = 1)
@@ -1596,7 +1596,7 @@ Reference - Exported functions 1 │ AA bb 1 0.1 1
2 │ AF aa 1 0.6 1
-
+
#
TidierDB.@slice_sample
— Macro.
@slice_sample(sql_query, n)
@@ -1628,7 +1628,7 @@ Reference - Exported functions @collect
end;
-
+
#
TidierDB.@summarise
— Macro.
@summarise(sql_query, exprs...)
@@ -1675,7 +1675,7 @@ Reference - Exported functions 1 │ aa 3.0 5
2 │ bb 2.5 5
-
+
#
TidierDB.@summarize
— Macro.
@summarize(sql_query, exprs...)
@@ -1722,7 +1722,7 @@ Reference - Exported functions 1 │ aa 3.0 5
2 │ bb 2.5 5
-
+
#
TidierDB.@window_frame
— Macro.
@window_frame(sql_query, frame_start::Int, frame_end::Int)
@@ -1744,7 +1744,7 @@ Reference - Exported functionsjulia> copy_to(db, df, "df_mem");
-
+
#
TidierDB.@window_order
— Macro.
@window_order(sql_query, columns...)
@@ -1765,7 +1765,7 @@ Reference - Exported functionsjulia> copy_to(db, df, "df_mem");
-
+
Reference - Internal functions¤
diff --git a/latest/search/search_index.json b/latest/search/search_index.json
index 839c22b..91a9ec7 100644
--- a/latest/search/search_index.json
+++ b/latest/search/search_index.json
@@ -1 +1 @@
-{"config":{"lang":["en"],"separator":"[\\s\\-]+","pipeline":["stopWordFilter"]},"docs":[{"location":"","title":"Home","text":""},{"location":"#what-is-tidierdbjl","title":"What is TidierDB.jl?","text":"TiderDB.jl is a 100% Julia implementation of the dbplyr R package, and similar to Python's ibis package.
The main goal of TidierDB.jl is to bring the syntax of Tidier.jl to multiple SQL backends, making it possible to analyze data directly on databases without needing to copy the entire database into memory.
"},{"location":"#currently-supported-backends-include","title":"Currently supported backends include:","text":" - DuckDB (the default)
duckdb()
- ClickHouse
clickhouse()
- SQLite
sqlite()
- MySQL and MariaDB
mysql()
- MSSQL
mssql()
- Postgres
postgres()
- Athena
athena()
- Snowflake
snowflake()
- Google Big Query
gbq()
- Oracle
oracle()
- Databricks
databricks()
Change the backend using set_sql_mode()
- for example - set_sql_mode(databricks())
"},{"location":"#installation","title":"Installation","text":"For the stable version:
] add TidierDB\n
TidierDB.jl currently supports the following top-level macros:
@arrange
@group_by
@filter
@select
@mutate
, which supports across()
@summarize
and @summarise
, which supports across()
@distinct
@left_join
, @right_join
, @inner_join
, @anti_join
, @full_join
, and @semi_join
(slight syntax differences from TidierData.jl) @count
@slice_min
, @slice_max
, @slice_sample
@window_order
and window_frame
@show_query
@collect
Supported helper functions for most backends include:
across()
desc()
if_else()
and case_when()
n()
starts_with()
, ends_with()
, and contains()
as_float()
, as_integer()
, and as_string()
is_missing()
missing_if()
and replace_missing()
From TidierStrings.jl:
str_detect
, str_replace
, str_replace_all
, str_remove_all
, str_remove
From TidierDates.jl:
year
, month
, day
, hour
, min
, second
, floor_date
, difftime
Supported aggregate functions (as supported by the backend) with more to come
mean
, minimium
, maximum
, std
, sum
, cumsum
, cor
, cov
, var
@summarize
supports any SQL aggregate function in addition to the list above. Simply write the function as written in SQL syntax and it will work
When using the DuckDB backend, if db_table
recieves a file path ( .parquet
, .json
, .csv
, iceberg
or delta
), it does not copy it into memory. This allows for queries on files too big for memory. db_table
also supports S3 bucket locations via DuckDB.
"},{"location":"#what-is-the-recommended-way-to-use-tidierdb","title":"What is the recommended way to use TidierDB?","text":"Typically, you will want to use TidierDB alongside TidierData because there are certain functionality (such as pivoting) which are only supported in TidierData and can only be performed on data frames.
Our recommended path for using TidierDB is to import the package so that there are no namespace conflicts with TidierData. Once TidierDB is integrated with Tidier, then Tidier will automatically load the packages in this fashion.
First, let's develop and execute a query using TidierDB. Notice that all top-level macros and functions originating from TidierDB start with a DB
prefix. Any functions defined within macros do not need to be prefixed within DB
because they are actually pseudofunctions that are in actuality converted into SQL code.
Even though the code reads similarly to TidierData, note that no computational work actually occurs until you run DB.@collect()
, which runs the SQL query and instantiates the result as a DataFrame.
using TidierData\nimport TidierDB as DB\n\ndb = DB.connect(DB.duckdb());\npath_or_name = \"https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv\"\n\n@chain DB.db_table(db, path_or_name) begin\n DB.@filter(!starts_with(model, \"M\"))\n DB.@group_by(cyl)\n DB.@summarize(mpg = mean(mpg))\n DB.@mutate(mpg_squared = mpg^2, \n mpg_rounded = round(mpg), \n mpg_efficiency = case_when(\n mpg >= cyl^2 , \"efficient\",\n mpg < 15.2 , \"inefficient\",\n \"moderate\")) \n DB.@filter(mpg_efficiency in (\"moderate\", \"efficient\"))\n DB.@arrange(desc(mpg_rounded))\n DB.@collect\nend\n
2\u00d75 DataFrame\n Row \u2502 cyl mpg mpg_squared mpg_rounded mpg_efficiency \n \u2502 Int64? Float64? Float64? Float64? String? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 4 27.3444 747.719 27.0 efficient\n 2 \u2502 6 19.7333 389.404 20.0 moderate\n
"},{"location":"#what-if-we-wanted-to-pivot-the-result","title":"What if we wanted to pivot the result?","text":"We cannot do this using TidierDB. However, we can call @pivot_longer()
from TidierData after the result of the query has been instantiated as a DataFrame, like this:
@chain DB.db_table(db, path_or_name) begin\n DB.@filter(!starts_with(model, \"M\"))\n DB.@group_by(cyl)\n DB.@summarize(mpg = mean(mpg))\n DB.@mutate(mpg_squared = mpg^2, \n mpg_rounded = round(mpg), \n mpg_efficiency = case_when(\n mpg >= cyl^2 , \"efficient\",\n mpg < 15.2 , \"inefficient\",\n \"moderate\")) \n DB.@filter(mpg_efficiency in (\"moderate\", \"efficient\"))\n DB.@arrange(desc(mpg_rounded))\n DB.@collect\n @pivot_longer(everything(), names_to = \"variable\", values_to = \"value\")\nend\n
10\u00d72 DataFrame\n Row \u2502 variable value \n \u2502 String Any \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 cyl 4\n 2 \u2502 cyl 6\n 3 \u2502 mpg 27.3444\n 4 \u2502 mpg 19.7333\n 5 \u2502 mpg_squared 747.719\n 6 \u2502 mpg_squared 389.404\n 7 \u2502 mpg_rounded 27.0\n 8 \u2502 mpg_rounded 20.0\n 9 \u2502 mpg_efficiency efficient\n 10 \u2502 mpg_efficiency moderate\n
"},{"location":"#what-sql-query-does-tidierdb-generate-for-a-given-piece-of-julia-code","title":"What SQL query does TidierDB generate for a given piece of Julia code?","text":"We can replace DB.collect()
with DB.@show_query
to reveal the underlying SQL query being generated by TidierDB. To handle complex queries, TidierDB makes heavy use of Common Table Expressions (CTE), which are a useful tool to organize long queries.
@chain DB.db_table(db, path_or_name) begin\n DB.@filter(!starts_with(model, \"M\"))\n DB.@group_by(cyl)\n DB.@summarize(mpg = mean(mpg))\n DB.@mutate(mpg_squared = mpg^2, \n mpg_rounded = round(mpg), \n mpg_efficiency = case_when(\n mpg >= cyl^2 , \"efficient\",\n mpg < 15.2 , \"inefficient\",\n \"moderate\")) \n DB.@filter(mpg_efficiency in (\"moderate\", \"efficient\"))\n DB.@arrange(desc(mpg_rounded))\n DB.@show_query\nend\n
WITH cte_1 AS (\nSELECT *\n FROM mtcars\n WHERE NOT (starts_with(model, 'M'))),\ncte_2 AS (\nSELECT cyl, AVG(mpg) AS mpg\n FROM cte_1\n GROUP BY cyl),\ncte_3 AS (\nSELECT cyl, mpg, POWER(mpg, 2) AS mpg_squared, ROUND(mpg) AS mpg_rounded, CASE WHEN mpg >= POWER(cyl, 2) THEN 'efficient' WHEN mpg < 15.2 THEN 'inefficient' ELSE 'moderate' END AS mpg_efficiency\n FROM cte_2 ),\ncte_4 AS (\nSELECT *\n FROM cte_3\n WHERE mpg_efficiency in ('moderate', 'efficient')) \nSELECT *\n FROM cte_4 \n ORDER BY mpg_rounded DESC\n
"},{"location":"#tidierdb-is-already-quite-fully-featured-supporting-advanced-tidierdata-functions-like-across-for-multi-column-selection","title":"TidierDB is already quite fully-featured, supporting advanced TidierData functions like across()
for multi-column selection.","text":"@chain DB.db_table(db, path_or_name) begin\n DB.@group_by(cyl)\n DB.@summarize(across((starts_with(\"a\"), ends_with(\"s\")), (mean, sum)))\n DB.@collect\nend\n
3\u00d75 DataFrame\n Row \u2502 cyl mean_am mean_vs sum_am sum_vs \n \u2502 Int64? Float64? Float64? Int128? Int128? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 4 0.727273 0.909091 8 10\n 2 \u2502 6 0.428571 0.571429 3 4\n 3 \u2502 8 0.142857 0.0 2 0\n
Bang bang !!
interpolation for columns and values is also supported.
There are a few subtle but important differences from Tidier.jl outlined here.
"},{"location":"#missing-a-function-or-backend","title":"Missing a function or backend?","text":"You can use any existing SQL function within @mutate
with the correct SQL syntax and it should just work.
But if you run into problems please open an issue, and we will be happy to take a look!
"},{"location":"reference/","title":"Reference","text":""},{"location":"reference/#index","title":"Index","text":" TidierDB.connect
TidierDB.copy_to
TidierDB.db_table
TidierDB.@anti_join
TidierDB.@arrange
TidierDB.@collect
TidierDB.@count
TidierDB.@distinct
TidierDB.@filter
TidierDB.@full_join
TidierDB.@group_by
TidierDB.@head
TidierDB.@inner_join
TidierDB.@interpolate
TidierDB.@left_join
TidierDB.@mutate
TidierDB.@rename
TidierDB.@right_join
TidierDB.@select
TidierDB.@semi_join
TidierDB.@slice_max
TidierDB.@slice_min
TidierDB.@slice_sample
TidierDB.@summarise
TidierDB.@summarize
TidierDB.@window_frame
TidierDB.@window_order
"},{"location":"reference/#reference-exported-functions","title":"Reference - Exported functions","text":"# TidierDB.connect
\u2014 Method.
connect(backend; kwargs...)\n
This function establishes a database connection based on the specified backend and connection parameters and sets the SQL mode
Arguments
-
backend
: type specifying the database backend to connect to. Supported backends are:
duckdb()
, sqlite()
(SQLite), mssql()
, mysql()
(for MariaDB and MySQL), clickhouse()
, postgres()
-
kwargs
: Keyword arguments specifying the connection parameters for the selected backend. The required parameters vary depending on the backend:
-
MySQL:
host
: The host name or IP address of the MySQL server. Default is \"localhost\". user
: The username for authentication. Default is an empty string. password
: The password for authentication. db
: The name of the database to connect to (optional). port
: The port number of the MySQL server (optional).
Returns
- A database connection object based on the selected backend.
Examples
# Connect to MySQL\n# conn = connect(mysql(); host=\"localhost\", user=\"root\", password=\"password\", db=\"mydb\")\n# Connect to PostgreSQL using LibPQ\n# conn = connect(postgres(); host=\"localhost\", dbname=\"mydb\", user=\"postgres\", password=\"password\")\n# Connect to ClickHouse\n# conn = connect(clickhouse(); host=\"localhost\", port=9000, database=\"mydb\", user=\"default\", password=\"\")\n# Connect to SQLite\n# conn = connect(sqlite())\n# Connect to Google Big Query\n# conn = connect(gbq(), \"json_user_key_path\", \"project_id\")\n# Connect to Snowflake\n# conn = connect(snowflake(), \"ac_id\", \"token\", \"Database_name\", \"Schema_name\", \"warehouse_name\")\n# Connect to DuckDB\n# connect to Google Cloud via DuckDB\n# google_db = connect(duckdb(), :gbq, access_key=\"string\", secret_key=\"string\")\n# Connect to AWS via DuckDB\n# aws_db = connect2(duckdb(), :aws, aws_access_key_id=get(ENV, \"AWS_ACCESS_KEY_ID\", \"access_key\"), aws_secret_access_key=get(ENV, \"AWS_SECRET_ACCESS_KEY\", \"secret_access key\"), aws_region=get(ENV, \"AWS_DEFAULT_REGION\", \"us-east-1\"))\n# Connect to MotherDuck\n# connect(duckdb(), \"token\") for first connection, vs connect(duckdb(), \"md:\") for reconnection\njulia> db = connect(duckdb())\nDuckDB.Connection(\":memory:\")\n
source
# TidierDB.copy_to
\u2014 Method.
copy_to(conn, df_or_path, \"name\")\n
Allows user to copy a df to the database connection. Currently supports DuckDB, SQLite, MySql
Arguments
-conn
: the database connection -df
: dataframe to be copied or path to serve as source. With DuckDB, path supports .csv, .json, .parquet to be used without copying intermediary df. -name
: name as string for the database to be used
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"test\");\n
source
# TidierDB.db_table
\u2014 Function.
db_table(database, table_name, athena_params, delta = false, iceberg = false)\n
db_table
starts the underlying SQL query struct, adding the metadata and table. If paths are passed directly to db_table instead of a name it will not copy it to memory, but rather ready directly from the file.
Arguments
database
: The Database or connection object -
table_name
: tablename as a string (name, local path, or URL). - CSV/TSV - Parquet - Json - Iceberg - Delta - S3 tables from AWS or Google Cloud
- DuckDB and ClickHouse support vectors of paths and URLs.
- DuckDB and ClickHouse also support use of
*
wildcards to read all files of a type in a location such as: db_table(db, \"Path/to/testing_files/*.parquet\")
delta
: must be true to read delta files iceberg
: must be true to read iceberg finalize_ctes
Example
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> db_table(db, \"df_mem\")\nTidierDB.SQLQuery(\"\", \"df_mem\", \"\", \"\", \"\", \"\", \"\", \"\", false, false, 4\u00d74 DataFrame\n Row \u2502 name type current_selxn table_name \n \u2502 String? String? Int64 String \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 id VARCHAR 1 df_mem\n 2 \u2502 groups VARCHAR 1 df_mem\n 3 \u2502 value BIGINT 1 df_mem\n 4 \u2502 percent DOUBLE 1 df_mem, false, DuckDB.Connection(\":memory:\"), TidierDB.CTE[], 0, nothing)\n
source
# TidierDB.@anti_join
\u2014 Macro.
@anti_join(sql_query, join_table, new_table_col, orignal_table_col)\n
Perform an anti join between two SQL queries based on a specified condition. This syntax here is slightly different than TidierData.jl, however, because SQL does not drop the joining column, for the metadata storage, it is preferrable for the names to be different
Arguments
sql_query
: The primary SQL query to operate on. join_table
: The secondary SQL table to join with the primary query table. new_table_col
: Column from the new table that matches for join. orignal_table_col
: Column from the original table that matches for join.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> df2 = DataFrame(id2 = [\"AA\", \"AC\", \"AE\", \"AG\", \"AI\", \"AK\", \"AM\"],\n category = [\"X\", \"Y\", \"X\", \"Y\", \"X\", \"Y\", \"X\"],\n score = [88, 92, 77, 83, 95, 68, 74]);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> copy_to(db, df2, \"df_join\");\n\njulia> @chain db_table(db, :df_mem) begin\n @anti_join(df_join, id2, id)\n @collect\n end\n5\u00d74 DataFrame\n Row \u2502 id groups value percent \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AB aa 2 0.2\n 2 \u2502 AD aa 4 0.4\n 3 \u2502 AF aa 1 0.6\n 4 \u2502 AH aa 3 0.8\n 5 \u2502 AJ aa 5 1.0\n
source
# TidierDB.@arrange
\u2014 Macro.
@arrange(sql_query, columns...)\n
Order SQL table rows based on specified column(s).
Arguments
sql_query
: The SQL query to operate on. columns
: Columns to order the rows by. Can include multiple columns for nested sorting. Wrap column name with desc()
for descending order.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @arrange(value, desc(percent))\n @collect\n end\n10\u00d74 DataFrame\n Row \u2502 id groups value percent \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AF aa 1 0.6\n 2 \u2502 AA bb 1 0.1\n 3 \u2502 AG bb 2 0.7\n 4 \u2502 AB aa 2 0.2\n 5 \u2502 AH aa 3 0.8\n 6 \u2502 AC bb 3 0.3\n 7 \u2502 AI bb 4 0.9\n 8 \u2502 AD aa 4 0.4\n 9 \u2502 AJ aa 5 1.0\n 10 \u2502 AE bb 5 0.5\n
source
# TidierDB.@collect
\u2014 Macro.
@collect(sql_query, stream = false)\n
db_table
starts the underlying SQL query struct, adding the metadata and table.
Arguments
sql_query
: The SQL query to operate on. stream
: optional streaming for query/execution of results when using duck db. Defaults to false
Example
julia> db = connect(duckdb());\n\njulia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @collect db_table(db, \"df_mem\")\n10\u00d74 DataFrame\n Row \u2502 id groups value percent \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1\n 2 \u2502 AB aa 2 0.2\n 3 \u2502 AC bb 3 0.3\n 4 \u2502 AD aa 4 0.4\n 5 \u2502 AE bb 5 0.5\n 6 \u2502 AF aa 1 0.6\n 7 \u2502 AG bb 2 0.7\n 8 \u2502 AH aa 3 0.8\n 9 \u2502 AI bb 4 0.9\n 10 \u2502 AJ aa 5 1.0\n
source
# TidierDB.@count
\u2014 Macro.
@count(sql_query, columns...)\n
Count the number of rows grouped by specified column(s).
Arguments
sql_query
: The SQL query to operate on. columns
: Columns to group by before counting. If no columns are specified, counts all rows in the query.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @count(groups)\n @arrange(groups)\n @collect\n end\n2\u00d72 DataFrame\n Row \u2502 groups count \n \u2502 String? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 aa 5\n 2 \u2502 bb 5\n
source
# TidierDB.@distinct
\u2014 Macro.
@distinct(sql_query, columns...)\n
Select distinct rows based on specified column(s). Distinct works differently in TidierData vs SQL and therefore TidierDB. Distinct will also select only the only columns it is given (or all if given none)
Arguments
sql_query
: The SQL query to operate on. columns
: Columns to determine uniqueness. If no columns are specified, all columns are used to identify distinct rows.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @distinct(value)\n @arrange(value)\n @collect\n end\n5\u00d71 DataFrame\n Row \u2502 value \n \u2502 Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 1\n 2 \u2502 2\n 3 \u2502 3\n 4 \u2502 4\n 5 \u2502 5\n\njulia> @chain db_table(db, :df_mem) begin\n @distinct\n @arrange(id)\n @collect\n end\n10\u00d74 DataFrame\n Row \u2502 id groups value percent \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1\n 2 \u2502 AB aa 2 0.2\n 3 \u2502 AC bb 3 0.3\n 4 \u2502 AD aa 4 0.4\n 5 \u2502 AE bb 5 0.5\n 6 \u2502 AF aa 1 0.6\n 7 \u2502 AG bb 2 0.7\n 8 \u2502 AH aa 3 0.8\n 9 \u2502 AI bb 4 0.9\n 10 \u2502 AJ aa 5 1.0\n
source
# TidierDB.@filter
\u2014 Macro.
@filter(sql_query, conditions...)\n
Filter rows in a SQL table based on specified conditions.
Arguments
sql_query
: The SQL query to filter rows from. -
conditions
: Expressions specifying the conditions that rows must satisfy to be included in the output. Rows for which the expression evaluates to true
will be included in the result. Multiple conditions can be combined using logical operators (&&
, ||
). It will automatically detect whether the conditions belong in WHERE vs HAVING.
Temporarily, it is best to use begin and end when filtering multiple conditions. (ex 2 below)\n
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @filter(percent > .5)\n @collect\n end\n5\u00d74 DataFrame\n Row \u2502 id groups value percent \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AF aa 1 0.6\n 2 \u2502 AG bb 2 0.7\n 3 \u2502 AH aa 3 0.8\n 4 \u2502 AI bb 4 0.9\n 5 \u2502 AJ aa 5 1.0\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @summarise(mean = mean(percent))\n @filter begin \n groups == \"bb\" || # logical operators can still be used like this\n mean > .5\n end\n @arrange(groups)\n @collect\n end\n2\u00d72 DataFrame\n Row \u2502 groups mean \n \u2502 String? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 aa 0.6\n 2 \u2502 bb 0.5\n
source
# TidierDB.@full_join
\u2014 Macro.
@inner_join(sql_query, join_table, new_table_col, orignal_table_col)\n
Perform an full join between two SQL queries based on a specified condition. This syntax here is slightly different than TidierData.jl, however, because SQL does not drop the joining column, for the metadata storage, it is preferrable for the names to be different
Arguments
sql_query
: The primary SQL query to operate on. join_table
: The secondary SQL table to join with the primary query table. new_table_col
: Column from the new table that matches for join. orignal_table_col
: Column from the original table that matches for join.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> df2 = DataFrame(id2 = [\"AA\", \"AC\", \"AE\", \"AG\", \"AI\", \"AK\", \"AM\"],\n category = [\"X\", \"Y\", \"X\", \"Y\", \"X\", \"Y\", \"X\"],\n score = [88, 92, 77, 83, 95, 68, 74]);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> copy_to(db, df2, \"df_join\");\n\njulia> @chain db_table(db, :df_mem) begin\n @full_join(df_join, id2, id)\n @collect\n end\n12\u00d77 DataFrame\n Row \u2502 id groups value percent id2 category score \n \u2502 String? String? Int64? Float64? String? String? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1 AA X 88\n 2 \u2502 AC bb 3 0.3 AC Y 92\n 3 \u2502 AE bb 5 0.5 AE X 77\n 4 \u2502 AG bb 2 0.7 AG Y 83\n 5 \u2502 AI bb 4 0.9 AI X 95\n 6 \u2502 AB aa 2 0.2 missing missing missing \n 7 \u2502 AD aa 4 0.4 missing missing missing \n 8 \u2502 AF aa 1 0.6 missing missing missing \n 9 \u2502 AH aa 3 0.8 missing missing missing \n 10 \u2502 AJ aa 5 1.0 missing missing missing \n 11 \u2502 missing missing missing missing AK Y 68\n 12 \u2502 missing missing missing missing AM X 74\n
source
# TidierDB.@group_by
\u2014 Macro.
@group_by(sql_query, columns...)\n
Group SQL table rows by specified column(s). If grouping is performed as a terminal operation without a subsequent mutatation or summarization (as in the example below), then the resulting data frame will be ungrouped when @collect
is applied.
Arguments
sql_query
: The SQL query to operate on. exprs
: Expressions specifying the columns to group by. Columns can be specified by name.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @arrange(groups)\n @collect\n end\n2\u00d71 DataFrame\n Row \u2502 groups \n \u2502 String? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 aa\n 2 \u2502 bb\n
source
# TidierDB.@head
\u2014 Macro.
@head(sql_query, value)\n
Limit SQL table number of rows returned based on specified value. LIMIT
in SQL
Arguments
sql_query
: The SQL query to operate on. value
: Number to limit how many rows are returned.
Examples
julia> db = connect(duckdb());\n\njulia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> copy_to(db, df, \"df_mem\"); \n\njulia> @chain db_table(db, :df_mem) begin\n @head(1) ## supports expressions ie `3-2` would return the same df below\n @collect\n end\n1\u00d74 DataFrame\n Row \u2502 id groups value percent \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1\n
source
# TidierDB.@inner_join
\u2014 Macro.
@inner_join(sql_query, join_table, new_table_col, orignal_table_col)\n
Perform an inner join between two SQL queries based on a specified condition. This syntax here is slightly different than TidierData.jl, however, because SQL does not drop the joining column, for the metadata storage, it is preferrable for the names to be different
Arguments
sql_query
: The primary SQL query to operate on. join_table
: The secondary SQL table to join with the primary query table. new_table_col
: Column from the new table that matches for join. orignal_table_col
: Column from the original table that matches for join.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> df2 = DataFrame(id2 = [\"AA\", \"AC\", \"AE\", \"AG\", \"AI\", \"AK\", \"AM\"],\n category = [\"X\", \"Y\", \"X\", \"Y\", \"X\", \"Y\", \"X\"],\n score = [88, 92, 77, 83, 95, 68, 74]);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> copy_to(db, df2, \"df_join\");\n\njulia> @chain db_table(db, :df_mem) begin\n @inner_join(df_join, id2, id)\n @collect\n end\n5\u00d77 DataFrame\n Row \u2502 id groups value percent id2 category score \n \u2502 String? String? Int64? Float64? String? String? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1 AA X 88\n 2 \u2502 AC bb 3 0.3 AC Y 92\n 3 \u2502 AE bb 5 0.5 AE X 77\n 4 \u2502 AG bb 2 0.7 AG Y 83\n 5 \u2502 AI bb 4 0.9 AI X 95\n
source
# TidierDB.@interpolate
\u2014 Macro.
@interpolate(args...)\n
Interpolate parameters into expressions for database queries.
Arguments
-
args...
: A variable number of tuples. Each tuple should contain:
name
: The name of the parameter to interpolate. value
: (Any): The value/vector to interpolate for the corresponding parameter name.
Example
julia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> col_names = [:id, :value, :percent];\n\njulia> cond1 = .2;\n\njulia> cond2 = 5;\n\njulia> @interpolate((condition1, cond1), (columns, col_names), (condition2, cond2));\n\njulia> @chain db_table(db, \"df_mem\") begin \n @select(!!columns)\n @filter begin \n percent < !!condition1\n value < !!condition2\n end\n @collect\n end\n1\u00d73 DataFrame\n Row \u2502 id value percent \n \u2502 String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA 1 0.1\n
source
# TidierDB.@left_join
\u2014 Macro.
@left_join(sql_query, join_table, new_table_col, orignal_table_col)\n
Perform a left join between two SQL queries based on a specified condition. This syntax here is slightly different than TidierData.jl, however, because SQL does not drop the joining column, for the metadata storage, it is preferrable for the names to be different
Arguments
sql_query
: The primary SQL query to operate on. join_table
: The secondary SQL table to join with the primary query table. new_table_col
: Column from the new table that matches for join. orignal_table_col
: Column from the original table that matches for join.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> df2 = DataFrame(id2 = [\"AA\", \"AC\", \"AE\", \"AG\", \"AI\", \"AK\", \"AM\"],\n category = [\"X\", \"Y\", \"X\", \"Y\", \"X\", \"Y\", \"X\"],\n score = [88, 92, 77, 83, 95, 68, 74]);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> copy_to(db, df2, \"df_join\");\n\njulia> @chain db_table(db, :df_mem) begin\n @left_join(df_join, id2, id)\n @collect\n end\n10\u00d77 DataFrame\n Row \u2502 id groups value percent id2 category score \n \u2502 String? String? Int64? Float64? String? String? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1 AA X 88\n 2 \u2502 AC bb 3 0.3 AC Y 92\n 3 \u2502 AE bb 5 0.5 AE X 77\n 4 \u2502 AG bb 2 0.7 AG Y 83\n 5 \u2502 AI bb 4 0.9 AI X 95\n 6 \u2502 AB aa 2 0.2 missing missing missing \n 7 \u2502 AD aa 4 0.4 missing missing missing \n 8 \u2502 AF aa 1 0.6 missing missing missing \n 9 \u2502 AH aa 3 0.8 missing missing missing \n 10 \u2502 AJ aa 5 1.0 missing missing missing \n
source
# TidierDB.@mutate
\u2014 Macro.
@mutate(sql_query, exprs...)\n
Mutate SQL table rows by adding new columns or modifying existing ones.
Arguments
sql_query
: The SQL query to operate on. exprs
: Expressions for mutating the table. New columns can be added or existing columns modified using column_name = expression syntax, where expression can involve existing columns.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @mutate(value = value * 4, new_col = percent^2)\n @collect\n end\n10\u00d75 DataFrame\n Row \u2502 id groups value percent new_col \n \u2502 String? String? Int64? Float64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 4 0.1 0.01\n 2 \u2502 AB aa 8 0.2 0.04\n 3 \u2502 AC bb 12 0.3 0.09\n 4 \u2502 AD aa 16 0.4 0.16\n 5 \u2502 AE bb 20 0.5 0.25\n 6 \u2502 AF aa 4 0.6 0.36\n 7 \u2502 AG bb 8 0.7 0.49\n 8 \u2502 AH aa 12 0.8 0.64\n 9 \u2502 AI bb 16 0.9 0.81\n 10 \u2502 AJ aa 20 1.0 1.0\n
source
# TidierDB.@rename
\u2014 Macro.
@rename(sql_query, renamings...)\n
Rename one or more columns in a SQL query.
Arguments
-sql_query
: The SQL query to operate on. -renamings
: One or more pairs of old and new column names, specified as new name = old name
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @rename(new_name = percent)\n @collect\n end\n10\u00d74 DataFrame\n Row \u2502 id groups value new_name \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1\n 2 \u2502 AB aa 2 0.2\n 3 \u2502 AC bb 3 0.3\n 4 \u2502 AD aa 4 0.4\n 5 \u2502 AE bb 5 0.5\n 6 \u2502 AF aa 1 0.6\n 7 \u2502 AG bb 2 0.7\n 8 \u2502 AH aa 3 0.8\n 9 \u2502 AI bb 4 0.9\n 10 \u2502 AJ aa 5 1.0\n
source
# TidierDB.@right_join
\u2014 Macro.
@right_join(sql_query, join_table, new_table_col, orignal_table_col)\n
Perform a right join between two SQL queries based on a specified condition. This syntax here is slightly different than TidierData.jl, however, because SQL does not drop the joining column, for the metadata storage, it is preferrable for the names to be different
Arguments
sql_query
: The primary SQL query to operate on. join_table
: The secondary SQL table to join with the primary query table. new_table_col
: Column from the new table that matches for join. orignal_table_col
: Column from the original table that matches for join.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> df2 = DataFrame(id2 = [\"AA\", \"AC\", \"AE\", \"AG\", \"AI\", \"AK\", \"AM\"],\n category = [\"X\", \"Y\", \"X\", \"Y\", \"X\", \"Y\", \"X\"],\n score = [88, 92, 77, 83, 95, 68, 74]);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> copy_to(db, df2, \"df_join\");\n\njulia> @chain db_table(db, :df_mem) begin\n @right_join(df_join, id2, id)\n @collect\n end\n7\u00d77 DataFrame\n Row \u2502 id groups value percent id2 category score \n \u2502 String? String? Int64? Float64? String? String? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1 AA X 88\n 2 \u2502 AC bb 3 0.3 AC Y 92\n 3 \u2502 AE bb 5 0.5 AE X 77\n 4 \u2502 AG bb 2 0.7 AG Y 83\n 5 \u2502 AI bb 4 0.9 AI X 95\n 6 \u2502 missing missing missing missing AK Y 68\n 7 \u2502 missing missing missing missing AM X 74\n
source
# TidierDB.@select
\u2014 Macro.
@select(sql_query, columns)\n
Select specified columns from a SQL table.
Arguments
sql_query
: The SQL query to select columns from. columns
: Expressions specifying the columns to select. Columns can be specified by name, and new columns can be created with expressions using existing column values.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @select(groups:percent)\n @collect\n end\n10\u00d73 DataFrame\n Row \u2502 groups value percent \n \u2502 String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 bb 1 0.1\n 2 \u2502 aa 2 0.2\n 3 \u2502 bb 3 0.3\n 4 \u2502 aa 4 0.4\n 5 \u2502 bb 5 0.5\n 6 \u2502 aa 1 0.6\n 7 \u2502 bb 2 0.7\n 8 \u2502 aa 3 0.8\n 9 \u2502 bb 4 0.9\n 10 \u2502 aa 5 1.0\n\njulia> @chain db_table(db, :df_mem) begin\n @select(contains(\"e\"))\n @collect\n end\n10\u00d72 DataFrame\n Row \u2502 value percent \n \u2502 Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 1 0.1\n 2 \u2502 2 0.2\n 3 \u2502 3 0.3\n 4 \u2502 4 0.4\n 5 \u2502 5 0.5\n 6 \u2502 1 0.6\n 7 \u2502 2 0.7\n 8 \u2502 3 0.8\n 9 \u2502 4 0.9\n 10 \u2502 5 1.0\n
source
# TidierDB.@semi_join
\u2014 Macro.
@semi_join(sql_query, join_table, new_table_col, orignal_table_col)\n
Perform an semi join between two SQL queries based on a specified condition. This syntax here is slightly different than TidierData.jl, however, because SQL does not drop the joining column, for the metadata storage, it is preferrable for the names to be different
Arguments
sql_query
: The primary SQL query to operate on. join_table
: The secondary SQL table to join with the primary query table. new_table_col
: Column from the new table that matches for join. orignal_table_col
: Column from the original table that matches for join.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> df2 = DataFrame(id2 = [\"AA\", \"AC\", \"AE\", \"AG\", \"AI\", \"AK\", \"AM\"],\n category = [\"X\", \"Y\", \"X\", \"Y\", \"X\", \"Y\", \"X\"],\n score = [88, 92, 77, 83, 95, 68, 74]);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> copy_to(db, df2, \"df_join\");\n\njulia> @chain db_table(db, :df_mem) begin\n @semi_join(df_join, id2, id)\n @collect\n end\n5\u00d74 DataFrame\n Row \u2502 id groups value percent \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1\n 2 \u2502 AC bb 3 0.3\n 3 \u2502 AE bb 5 0.5\n 4 \u2502 AG bb 2 0.7\n 5 \u2502 AI bb 4 0.9\n
source
# TidierDB.@slice_max
\u2014 Macro.
@slice_max(sql_query, column, n = 1)\n
Select rows with the largest values in specified column. This will always return ties.
Arguments
sql_query
: The SQL query to operate on. column
: Column to identify the smallest values. n
: The number of rows to select with the largest values for each specified column. Default is 1, which selects the row with the smallest value.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @slice_max(value, n = 2)\n @collect\n end;\n\njulia> @chain db_table(db, :df_mem) begin\n @slice_max(value)\n @collect\n end\n2\u00d75 DataFrame\n Row \u2502 id groups value percent rank_col \n \u2502 String? String? Int64? Float64? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AE bb 5 0.5 1\n 2 \u2502 AJ aa 5 1.0 1\n
source
# TidierDB.@slice_min
\u2014 Macro.
@slice_min(sql_query, column, n = 1)\n
Select rows with the smallest values in specified column. This will always return ties.
Arguments
sql_query
: The SQL query to operate on. column
: Column to identify the smallest values. n
: The number of rows to select with the smallest values for each specified column. Default is 1, which selects the row with the smallest value.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @slice_min(value, n = 2)\n @collect\n end;\n\njulia> @chain db_table(db, :df_mem) begin\n @slice_min(value)\n @collect\n end\n2\u00d75 DataFrame\n Row \u2502 id groups value percent rank_col \n \u2502 String? String? Int64? Float64? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1 1\n 2 \u2502 AF aa 1 0.6 1\n
source
# TidierDB.@slice_sample
\u2014 Macro.
@slice_sample(sql_query, n)\n
Randomly select a specified number of rows from a SQL table.
Arguments
sql_query
: The SQL query to operate on. n
: The number of rows to randomly select.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @slice_sample(n = 2)\n @collect\n end;\n\njulia> @chain db_table(db, :df_mem) begin\n @slice_sample()\n @collect\n end;\n
source
# TidierDB.@summarise
\u2014 Macro.
@summarise(sql_query, exprs...)\n
Aggregate and summarize specified columns of a SQL table.
Arguments
sql_query
: The SQL query to operate on. exprs
: Expressions defining the aggregation and summarization operations. These can specify simple aggregations like mean, sum, and count, or more complex expressions involving existing column values.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @summarise(across((value:percent), (mean, sum)))\n @arrange(groups)\n @collect\n end\n2\u00d75 DataFrame\n Row \u2502 groups mean_value mean_percent sum_value sum_percent \n \u2502 String? Float64? Float64? Int128? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 aa 3.0 0.6 15 3.0\n 2 \u2502 bb 3.0 0.5 15 2.5\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @summarise(test = sum(percent), n = n())\n @arrange(groups)\n @collect\n end\n2\u00d73 DataFrame\n Row \u2502 groups test n \n \u2502 String? Float64? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 aa 3.0 5\n 2 \u2502 bb 2.5 5\n
source
# TidierDB.@summarize
\u2014 Macro.
@summarize(sql_query, exprs...)\n
Aggregate and summarize specified columns of a SQL table.
Arguments
sql_query
: The SQL query to operate on. exprs
: Expressions defining the aggregation and summarization operations. These can specify simple aggregations like mean, sum, and count, or more complex expressions involving existing column values.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @summarise(across((ends_with(\"e\"), starts_with(\"p\")), (mean, sum)))\n @arrange(groups)\n @collect\n end\n2\u00d75 DataFrame\n Row \u2502 groups mean_value mean_percent sum_value sum_percent \n \u2502 String? Float64? Float64? Int128? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 aa 3.0 0.6 15 3.0\n 2 \u2502 bb 3.0 0.5 15 2.5\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @summarise(test = sum(percent), n = n())\n @arrange(groups)\n @collect\n end\n2\u00d73 DataFrame\n Row \u2502 groups test n \n \u2502 String? Float64? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 aa 3.0 5\n 2 \u2502 bb 2.5 5\n
source
# TidierDB.@window_frame
\u2014 Macro.
@window_frame(sql_query, frame_start::Int, frame_end::Int)\n
Define the window frame for window functions in a SQL query, specifying the range of rows to include in the calculation relative to the current row.
Arguments
sql_query: The SQL query to operate on, expected to be an instance of SQLQuery.
frame_start
: The starting point of the window frame. A positive value indicates the start after the current row (FOLLOWING), a negative value indicates before the current row (PRECEDING), and 0 indicates the current row. frame_end
: The ending point of the window frame. A positive value indicates the end after the current row (FOLLOWING), a negative value indicates before the current row (PRECEDING), and 0 indicates the current row.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n
source
# TidierDB.@window_order
\u2014 Macro.
@window_order(sql_query, columns...)\n
Specify the order of rows for window functions within a SQL query.
Arguments
sql_query
: The SQL query to operate on. columns
: Columns to order the rows by for the window function. Can include multiple columns for nested sorting. Prepend a column name with - for descending order.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n
source
"},{"location":"reference/#reference-internal-functions","title":"Reference - Internal functions","text":""},{"location":"examples/generated/UserGuide/Snowflake/","title":"Using Snowflake","text":"Establishing a connection with the Snowflake SQL Rest API requires a OAuth token specific to the Role the user will use to query tables with.
"},{"location":"examples/generated/UserGuide/Snowflake/#connecting","title":"Connecting","text":"Connection is established with the connect
function as shown below. Connection requires 5 items as strings
- Account Identifier
- OAuth token
- Database Name
- Schema Name
- Compute Warehouse name
Two things to note:
- Your OAuth Token may frequently expire, which may require you to rerun your connection line.
-
Since each time db_table
runs, it runs a query to pull the metadata, you may choose to use run db_table
and save the results, and use these results withfrom_query()
- This will reduce the number of queries to your database
- Allow you to build a a SQL query and
@show_query
even if the OAuthtoken has expired. To @collect
you will have to reconnect and rerun dbtable if your OAuth token has expired
set_sql_mode(snowflake())\nac_id = \"string_id\"\ntoken = \"OAuth_token_string\"\ncon = connect(:snowflake, ac_id, token, \"DEMODB\", \"PUBLIC\", \"COMPUTE_WH\")\n# After connection is established, a you may begin querying.\nstable_table_metadata = db_table(con, \"MTCARS\")\n@chain from_query(stable_table_metadata) begin\n @select(WT)\n @mutate(TEST = WT *2)\n #@aside @show_query _\n @collect\nend\n
32\u00d72 DataFrame\n Row \u2502 WT TEST\n \u2502 Float64 Float64\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 2.62 5.24\n 2 \u2502 2.875 5.75\n 3 \u2502 2.32 4.64\n 4 \u2502 3.215 6.43\n \u22ee \u2502 \u22ee \u22ee\n 29 \u2502 3.17 6.34\n 30 \u2502 2.77 5.54\n 31 \u2502 3.57 7.14\n 32 \u2502 2.78 5.56\n 24 rows omitted\n
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/athena/","title":"Using Athena","text":"To use the Athena AWS backend with TidierDB, set up and a small syntax difference are covered here.
"},{"location":"examples/generated/UserGuide/athena/#connecting","title":"Connecting","text":"Connection is established through AWS.jl as shwon below.
using TidierDB, AWS\nset_sql_mode(athena())\n# Replace your credentials as needed below\naws_access_key_id = get(ENV,\"AWS_ACCESS_KEY_ID\",\"key\")\naws_secret_access_key = get(ENV, \"AWS_SECRET_ACCESS_KEY\",\"secret_key\")\naws_region = get(ENV,\"AWS_DEFAULT_REGION\",\"region\")\n\nconst AWS_GLOBAL_CONFIG = Ref{AWS.AWSConfig}()\ncreds = AWSCredentials(aws_access_key_id, aws_secret_access_key)\n\nAWS_GLOBAL_CONFIG[] = AWS.global_aws_config(region=aws_region, creds=creds)\n\ncatalog = \"AwsDataCatalog\"\nworkgroup = \"primary\"\ndb = \"demodb\"\nall_results = true\nresults_per_increment = 10\nout_loc = \"s3://location/\"\n\nathena_params = Dict(\n \"ResultConfiguration\" => Dict(\n \"OutputLocation\" => out_loc\n ),\n \"QueryExecutionContext\" => Dict(\n \"Database\" => db,\n \"Catalog\" => catalog\n ),\n \"Workgroup\" => workgroup\n)\n
"},{"location":"examples/generated/UserGuide/athena/#db_table-differences","title":"db_table
differences","text":"There are two differences for db_table
which are seen in the query below
- The table needs to be passed as a string in the format database.table, ie
\"demodb.table_name
db_table
requires a third argument: the athena_params from above.
"},{"location":"examples/generated/UserGuide/athena/#leveraging-from_query-with-athena-to-reduce-number-of-queries","title":"Leveraging from_query
with Athena to reduce number of queries","text":"Throughout TidierDB, each time db_table
is called, it queries the databases to get the metadata. Consider how AWS Athena logs queries, a user may want to reduce the number of queries. This can be done saving the results of db_table
, and then using from_query with those results for furthe queries as shown below.
mtcars = db_table(AWS_GLOBAL_CONFIG[], \"demodb.mtcars\", athena_params)\n@chain from_query(mtcars) begin\n @filter(cyl > 4)\n @group_by(cyl)\n @summarize(mpg = mean(mpg))\n #@show_query\n @collect\nend\n
2\u00d72 DataFrame\n Row \u2502 cyl mpg\n \u2502 Int64 Float64\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 6 19.7429\n 2 \u2502 8 15.1\n
I would like to acknowledge the work of Manu Francis and this blog post, which helped guide this process
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/databricks/","title":"Using Databricks","text":"Establishing a connection with the Databricks SQL Rest API requires a token.
"},{"location":"examples/generated/UserGuide/databricks/#connecting","title":"Connecting","text":"Connection is established with the connect
function as shown below. Connection requires 5 items as strings
- Account Instance : how to find your instance
- OAuth token : how to generate your token
- Database Name
- Schema Name
- warehouse_id
One thing to note, Since each time db_table
runs, it runs a query to pull the metadata, you may choose to use run db_table
and save the results, and use these results with from_query()
. This will reduce the number of queries to your database and is illustrated below.
set_sql_mode(databricks())\ninstance_id = \"string_id\"\ntoken \"string_token\"\nwarehouse_id = \"e673cd4f387f964a\"\ncon = connect(:databricks, instance_id, token, \"DEMODB\", \"PUBLIC\", warehouse_id)\n# After connection is established, a you may begin querying.\nstable_table_metadata = db_table(con, \"mtcars\")\n@chain from_query(stable_table_metadata) begin\n @select(wt)\n @mutate(test = wt *2)\n #@aside @show_query _\n @collect\nend\n
32\u00d72 DataFrame\n Row \u2502 wt test\n \u2502 Float64 Float64\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 2.62 5.24\n 2 \u2502 2.875 5.75\n 3 \u2502 2.32 4.64\n 4 \u2502 3.215 6.43\n \u22ee \u2502 \u22ee \u22ee\n 29 \u2502 3.17 6.34\n 30 \u2502 2.77 5.54\n 31 \u2502 3.57 7.14\n 32 \u2502 2.78 5.56\n 24 rows omitted\n
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/from_queryex/","title":"Reusing Part of a Query","text":"While using TidierDB, you may need to generate part of a query and reuse it multiple times. from_query()
enables a query portion to be reused multiple times as shown below.
import TidierDB as DB\ncon = DB.connect(duckdb())\nmtcars_path = \"https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv\"\n
Start a query to analyze fuel efficiency by number of cylinders. However, to further build on this query later, end the chain without using @show_query
or @collect
query = DB.@chain DB.db_table(con, mtcars_path) begin\n DB.@group_by cyl\n DB.@summarize begin\n across(mpg, (mean, minimum, maximum))\n num_cars = n()\n end\n DB.@mutate begin\n efficiency = case_when(\n mean_mpg >= 25, \"High\",\n mean_mpg >= 15, \"Moderate\",\n \"Low\" )\n end\nend;\n
Now, from_query
will allow you to reuse the query to calculate the average horsepower for each efficiency category
DB.@chain DB.from_query(query) begin\n DB.@left_join(mtcars2, cyl, cyl)\n DB.@group_by(efficiency)\n DB.@summarize(avg_hp = mean(hp))\n DB.@collect\nend\n
2\u00d72 DataFrame\n Row \u2502 efficiency avg_hp\n \u2502 String? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Moderate 180.238\n 2 \u2502 High 82.6364\n
Reuse the query again to find the car with the highest MPG for each cylinder category
DB.@chain DB.from_query(query) begin\n DB.@left_join(mtcars2, cyl, cyl)\n DB.@group_by cyl\n DB.@slice_max(mpg)\n DB.@select model cyl mpg\n DB.@collect\nend\n
3\u00d73 DataFrame\n Row \u2502 model cyl mpg\n \u2502 String? Int64? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Pontiac Firebird 8 19.2\n 2 \u2502 Toyota Corolla 4 33.9\n 3 \u2502 Hornet 4 Drive 6 21.4\n
"},{"location":"examples/generated/UserGuide/from_queryex/#preview-or-save-an-intermediate-table","title":"Preview or save an intermediate table","text":"While querying a dataset, you may wish to see an intermediate table, or even save it. You can use @aside
and from_query(_)
, illustrated below, to do just that. While we opted to print the results in this simple example below, we could have saved them by using name = DB.@chain...
import ClickHouse;\nconn = conn = DB.connect(DB.clickhouse(); host=\"localhost\", port=19000, database=\"default\", user=\"default\", password=\"\")\npath = \"https://huggingface.co/datasets/maharshipandya/spotify-tracks-dataset/resolve/refs%2Fconvert%2Fparquet/default/train/0000.parquet\"\nDB.@chain DB.db_table(conn, path) begin\n DB.@count(cyl)\n @aside println(DB.@chain DB.from_query(_) DB.@head(5) DB.@collect)\n DB.@arrange(desc(count))\n DB.@collect\nend\n
5\u00d72 DataFrame\n Row \u2502 artists count\n \u2502 String? UInt64\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 missing 1\n 2 \u2502 Wizo 3\n 3 \u2502 MAGIC! 3\n 4 \u2502 Macaco 1\n 5 \u2502 SOYOU 1\n31438\u00d72 DataFrame\n Row \u2502 artists count\n \u2502 String? UInt64\n\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 The Beatles 279\n 2 \u2502 George Jones 271\n 3 \u2502 Stevie Wonder 236\n 4 \u2502 Linkin Park 224\n 5 \u2502 Ella Fitzgerald 222\n 6 \u2502 Prateek Kuhad 217\n 7 \u2502 Feid 202\n \u22ee \u2502 \u22ee \u22ee\n 31432 \u2502 Leonard 1\n 31433 \u2502 marcos g 1\n 31434 \u2502 BLVKSHP 1\n 31435 \u2502 Memtrix 1\n 31436 \u2502 SOYOU 1\n 31437 \u2502 Macaco 1\n 31438 \u2502 missing 1\n 31424 rows omitted\n
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/functions_pass_to_DB/","title":"Writing Functions/Macros with TidierDB Chains","text":"How can functions pass arguments to a TidierDB chain?
In short, you have to use a macro instead in conjuction with @interpolate
"},{"location":"examples/generated/UserGuide/functions_pass_to_DB/#setting-up-the-macro","title":"Setting up the macro","text":"To write a macro that will take arguments and pass them to a TidierDB chain, there are 3 steps:
- Write macro with the desired argument(s), and, after the quote, add the chain. Arguments to be changed/interpolated must be prefixed with
!!
- Use
@interpolate
to make these arguemnts accessible to the chain. @interpolate
takes touples as argument (one for the !!
name, and one for the actual content you want the chain to use) - Run
@interpolate
and then the chain macro sequentially
using TidierDB\ndb = connect(duckdb())\npath = \"https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv\"\ncopy_to(db, path, \"mtcars\");\n\n# STEP 1\nmacro f1(conditions, columns) # The arguemnt names will be names of the `!!` values\n return quote\n # add chain here\n @chain db_table(db, :mtcars) begin\n @filter(!!conditions > 3)\n @select(!!columns)\n @aside @show_query _\n @collect\n end # ends the chain\n end # ends the quote.\nend # ends the macro\n
# STEP 2\nvariable = :gear;\ncols = [:model, :mpg, :gear, :wt];\n@interpolate((conditions, variable), (columns, cols));\n@f1(variable, cols)\n
17\u00d74 DataFrame\n Row \u2502 model mpg gear wt\n \u2502 String? Float64? Int32? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Mazda RX4 21.0 4 2.62\n 2 \u2502 Mazda RX4 Wag 21.0 4 2.875\n 3 \u2502 Datsun 710 22.8 4 2.32\n \u22ee \u2502 \u22ee \u22ee \u22ee \u22ee\n 15 \u2502 Ferrari Dino 19.7 5 2.77\n 16 \u2502 Maserati Bora 15.0 5 3.57\n 17 \u2502 Volvo 142E 21.4 4 2.78\n 11 rows omitted\n
Lets say you wanted to filter on new variable with a different name and select new columns,
new_condition = :wt;\nnew_cols = [:model, :drat]\n@interpolate((conditions, new_condition), (columns, new_cols));\n@f1(new_condition, new_cols)\n
20\u00d72 DataFrame\n Row \u2502 model drat\n \u2502 String? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Hornet 4 Drive 3.08\n 2 \u2502 Hornet Sportabout 3.15\n 3 \u2502 Valiant 2.76\n \u22ee \u2502 \u22ee \u22ee\n 18 \u2502 Pontiac Firebird 3.08\n 19 \u2502 Ford Pantera L 4.22\n 20 \u2502 Maserati Bora 3.54\n 14 rows omitted\n
You can also interpolate vectors of strings into a @filter(col in (values))
as well by using the following syntax @filter(col in [!!values])
In short, the first argument in @interpolate
must be the name of the macro argument it refers to, and the second argument is what you would like to replace it.
We recognize this adds friction and that it is not ideal, but given the TidierDB macro expressions/string interplay, this is currently the most graceful and functional option available and hopefully a temporary solution to better interpolation that mirrors TidierData.jl.
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/getting_started/","title":"Getting Started","text":"To use TidierDB.jl, you will have to set up a connection. TidierDB.jl gives you access to duckdb via duckdb_open
and duckdb_connect
. However, to use MySql, ClickHouse, MSSQL, Postgres, or SQLite, you will have to load those packages in first.
If you plan to use TidierDB.jl with TidierData.jl or Tidier.jl, it is most convenenient to load the packages as follows:
using TidierData\nimport TidierDB as DB\n
Alternatively, using Tidier
will import TidierDB in the above manner for you, where TidierDB functions and macros will be available as DB.@mutate()
and so on, and the TidierData equivalent would be @mutate()
.
"},{"location":"examples/generated/UserGuide/getting_started/#connecting","title":"Connecting","text":"To connect to a database, you can uset the connect
function as shown below, or establish your own connection through the respecitve libraries.
For example Connecting to MySQL
conn = DB.connect(DB.mysql(); host=\"localhost\", user=\"root\", password=\"password\", db=\"mydb\")\n
versus connecting to DuckDB
conn = DB.connect(DB.duckdb())\n
You can also use establish a connection through an alternate method that you preferred, and use that as your connection as well.
"},{"location":"examples/generated/UserGuide/getting_started/#package-extensions","title":"Package Extensions","text":"The following backends utilize package extensions. To use one of backends listed below, you will need to write using Library
- ClickHouse:
import ClickHouse
- MySQL and MariaDB:
using MySQL
- MSSQL:
using ODBC
- Postgres:
using LibPQ
- SQLite:
using SQLite
- Athena:
using AWS
- Oracle:
using ODBC
- Google BigQuery:
using GoogleCloud
"},{"location":"examples/generated/UserGuide/getting_started/#db_table","title":"db_table
","text":"What does db_table
do?
db_table
starts the underlying SQL query struct, in addition to pulling the table metadata and storing it there. Storing metadata is what enables a lazy interface that also supports tidy selection.
db_table
has two required arguments: connection
and table
table
can be a table name on a database or a path/url to file to read. When passing db_table
a path or url, the table is not copied into memory. - With DuckDB and ClickHouse, if you have a folder of multiple files to read, you can use
*
read in all files matching the pattern. - For example, the below would read all files that end in
.csv
in the given folder.
db_table(db, \"folder/path/*.csv\")\n
db_table
also supports iceberg, delta, and S3 file paths via DuckDB.
"},{"location":"examples/generated/UserGuide/getting_started/#minimizing-compute-costs","title":"Minimizing Compute Costs","text":"If you are working with a backend where compute cost is important, it will be important to minimize using db_table
as this will requery for metadata each time. Compute costs are relevant to backends such as AWS, databricks and Snowflake.
To do this, save the results of db_table
and use them with from_query
. Using from_query
pulls the relevant information (metadata, con, etc) from the mutable SQLquery struct, allowing you to repeatedly query and collect the table without requerying for the metadata each time
table = DB.db_table(con, \"path\")\n@chain DB.from_query(table) begin\n ## data wrangling here\nend\n
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/ibis_comp/","title":"TidierDB.jl vs Ibis","text":""},{"location":"examples/generated/UserGuide/ibis_comp/#comparing-tidierdb-vs-ibis","title":"Comparing TidierDB vs Ibis","text":"TidierDB is a reimplementation of dbplyr from R, so the syntax is remarkably similar. But how does TidierDB compare to Python's Ibis? This page will perform a similar comparison to the Ibis Documentation comparing Ibis and dplyr
"},{"location":"examples/generated/UserGuide/ibis_comp/#set-up","title":"Set up","text":"Ibis
import ibis\nimport ibis.selectors as s # allows for different styles of column selection\nfrom ibis import _ # eliminates need to type table name before each column vs typing cols as strings\nibis.options.interactive = True # automatically collects first 10 rows of table\n
TidierDB
using TidierDB\ndb = connect(duckdb())\n# This next line is optional, but it will let us avoid writing `db_table` or `from_query` for each query\nt(table) = from_query(table)\n
Of note, TidierDB does not yet have an \"interactive mode\" so each example result will be collected.
"},{"location":"examples/generated/UserGuide/ibis_comp/#loading-data","title":"Loading Data","text":"With Ibis, there are specific functions to read in different file types
mtcars = ibis.read_csv(\"https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv\")\n
In TidierDB, there is only db_table
, which determines the file type and generates the syntax appropriate for the backend in use.
mtcars = db_table(db, \"https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv\");\n
"},{"location":"examples/generated/UserGuide/ibis_comp/#previewing-the-data","title":"Previewing the data","text":"TidierDB and Ibis use head
/@head
to preview the first rows of a dataset.
mtcars.head(6)\n
\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 model \u2503 mpg \u2503 cyl \u2503 disp \u2503 hp \u2503 drat \u2503 wt \u2503 qsec \u2503 vs \u2503 am \u2503 gear \u2503 carb \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 string \u2502 float64 \u2502 int64 \u2502 float64 \u2502 int64 \u2502 float64 \u2502 float64 \u2502 float64 \u2502 int64 \u2502 int64 \u2502 int64 \u2502 int64 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Mazda RX4 \u2502 21.0 \u2502 6 \u2502 160.0 \u2502 110 \u2502 3.90 \u2502 2.620 \u2502 16.46 \u2502 0 \u2502 1 \u2502 4 \u2502 4 \u2502\n\u2502 Mazda RX4 Wag \u2502 21.0 \u2502 6 \u2502 160.0 \u2502 110 \u2502 3.90 \u2502 2.875 \u2502 17.02 \u2502 0 \u2502 1 \u2502 4 \u2502 4 \u2502\n\u2502 Datsun 710 \u2502 22.8 \u2502 4 \u2502 108.0 \u2502 93 \u2502 3.85 \u2502 2.320 \u2502 18.61 \u2502 1 \u2502 1 \u2502 4 \u2502 1 \u2502\n\u2502 Hornet 4 Drive \u2502 21.4 \u2502 6 \u2502 258.0 \u2502 110 \u2502 3.08 \u2502 3.215 \u2502 19.44 \u2502 1 \u2502 0 \u2502 3 \u2502 1 \u2502\n\u2502 Hornet Sportabout \u2502 18.7 \u2502 8 \u2502 360.0 \u2502 175 \u2502 3.15 \u2502 3.440 \u2502 17.02 \u2502 0 \u2502 0 \u2502 3 \u2502 2 \u2502\n\u2502 Valiant \u2502 18.1 \u2502 6 \u2502 225.0 \u2502 105 \u2502 2.76 \u2502 3.460 \u2502 20.22 \u2502 1 \u2502 0 \u2502 3 \u2502 1 \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n
@chain t(mtcars) @head(6) @collect\n
6\u00d712 DataFrame\n Row \u2502 model mpg cyl disp hp drat wt qsec vs am gear carb\n \u2502 String? Float64? Int64? Float64? Int64? Float64? Float64? Float64? Int64? Int64? Int64? Int64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Mazda RX4 21.0 6 160.0 110 3.9 2.62 16.46 0 1 4 4\n 2 \u2502 Mazda RX4 Wag 21.0 6 160.0 110 3.9 2.875 17.02 0 1 4 4\n 3 \u2502 Datsun 710 22.8 4 108.0 93 3.85 2.32 18.61 1 1 4 1\n 4 \u2502 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1\n 5 \u2502 Hornet Sportabout 18.7 8 360.0 175 3.15 3.44 17.02 0 0 3 2\n 6 \u2502 Valiant 18.1 6 225.0 105 2.76 3.46 20.22 1 0 3 1\n
"},{"location":"examples/generated/UserGuide/ibis_comp/#filtering","title":"Filtering","text":"The example below demonstrates how to filter using multiple criteria in both Ibis and TidierData
mtcars.filter(((_.mpg > 22) & (_.drat > 4) | (_.hp == 113)))\n
\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 model \u2503 mpg \u2503 cyl \u2503 disp \u2503 hp \u2503 drat \u2503 wt \u2503 qsec \u2503 vs \u2503 am \u2503 gear \u2503 carb \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 string \u2502 float64 \u2502 int64 \u2502 float64 \u2502 int64 \u2502 float64 \u2502 float64 \u2502 float64 \u2502 int64 \u2502 int64 \u2502 int64 \u2502 int64 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Lotus Europa \u2502 30.4 \u2502 4 \u2502 95.1 \u2502 113 \u2502 3.77 \u2502 1.513 \u2502 16.90 \u2502 1 \u2502 1 \u2502 5 \u2502 2 \u2502\n\u2502 Fiat 128 \u2502 32.4 \u2502 4 \u2502 78.7 \u2502 66 \u2502 4.08 \u2502 2.200 \u2502 19.47 \u2502 1 \u2502 1 \u2502 4 \u2502 1 \u2502\n\u2502 Honda Civic \u2502 30.4 \u2502 4 \u2502 75.7 \u2502 52 \u2502 4.93 \u2502 1.615 \u2502 18.52 \u2502 1 \u2502 1 \u2502 4 \u2502 2 \u2502\n\u2502 Toyota Corolla \u2502 33.9 \u2502 4 \u2502 71.1 \u2502 65 \u2502 4.22 \u2502 1.835 \u2502 19.90 \u2502 1 \u2502 1 \u2502 4 \u2502 1 \u2502\n\u2502 Fiat X1-9 \u2502 27.3 \u2502 4 \u2502 79.0 \u2502 66 \u2502 4.08 \u2502 1.935 \u2502 18.90 \u2502 1 \u2502 1 \u2502 4 \u2502 1 \u2502\n\u2502 Porsche 914-2 \u2502 26.0 \u2502 4 \u2502 120.3 \u2502 91 \u2502 4.43 \u2502 2.140 \u2502 16.70 \u2502 0 \u2502 1 \u2502 5 \u2502 2 \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n
TidierDB
@chain t(mtcars) begin\n @filter((mpg > 22 && drat > 4) || hp == 113)\n @collect\nend\n
6\u00d712 DataFrame\n Row \u2502 model mpg cyl disp hp drat wt qsec vs am gear carb\n \u2502 String? Float64? Int64? Float64? Int64? Float64? Float64? Float64? Int64? Int64? Int64? Int64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2\n 2 \u2502 Fiat 128 32.4 4 78.7 66 4.08 2.2 19.47 1 1 4 1\n 3 \u2502 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2\n 4 \u2502 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.9 1 1 4 1\n 5 \u2502 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.9 1 1 4 1\n 6 \u2502 Porsche 914-2 26.0 4 120.3 91 4.43 2.14 16.7 0 1 5 2\n
"},{"location":"examples/generated/UserGuide/ibis_comp/#creating-new-columns","title":"Creating new columns","text":"Both TidierDB and Ibis use mutate
/@mutate
to add new columns
(\n mtcars\n .mutate(kpg = _.mpg * 1.61)\n .select(\"model\", \"kpg\")\n)\n
\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 model \u2503 kpg \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 string \u2502 float64 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Mazda RX4 \u2502 33.810 \u2502\n\u2502 Mazda RX4 Wag \u2502 33.810 \u2502\n\u2502 Datsun 710 \u2502 36.708 \u2502\n\u2502 Hornet 4 Drive \u2502 34.454 \u2502\n\u2502 Hornet Sportabout \u2502 30.107 \u2502\n\u2502 Valiant \u2502 29.141 \u2502\n\u2502 Duster 360 \u2502 23.023 \u2502\n\u2502 Merc 240D \u2502 39.284 \u2502\n\u2502 Merc 230 \u2502 36.708 \u2502\n\u2502 Merc 280 \u2502 30.912 \u2502\n\u2502 \u2026 \u2502 \u2026 \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n
@chain t(mtcars) begin\n @mutate(kpg = mpg * 1.61)\n @select(model, kpg)\n @collect\nend\n
32\u00d72 DataFrame\n Row \u2502 model kpg\n \u2502 String? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Mazda RX4 33.81\n 2 \u2502 Mazda RX4 Wag 33.81\n 3 \u2502 Datsun 710 36.708\n 4 \u2502 Hornet 4 Drive 34.454\n 5 \u2502 Hornet Sportabout 30.107\n 6 \u2502 Valiant 29.141\n \u22ee \u2502 \u22ee \u22ee\n 27 \u2502 Porsche 914-2 41.86\n 28 \u2502 Lotus Europa 48.944\n 29 \u2502 Ford Pantera L 25.438\n 30 \u2502 Ferrari Dino 31.717\n 31 \u2502 Maserati Bora 24.15\n 32 \u2502 Volvo 142E 34.454\n 20 rows omitted\n
"},{"location":"examples/generated/UserGuide/ibis_comp/#sorting-columns","title":"Sorting columns","text":"Ibis uses order_by
similar to SQLs ORDER BY
mtcars.order_by(_.mpg)\n
\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 model \u2503 mpg \u2503 cyl \u2503 disp \u2503 hp \u2503 drat \u2503 wt \u2503 qsec \u2503 vs \u2503 am \u2503 gear \u2503 carb \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 string \u2502 float64 \u2502 int64 \u2502 float64 \u2502 int64 \u2502 float64 \u2502 float64 \u2502 float64 \u2502 int64 \u2502 int64 \u2502 int64 \u2502 int64 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Cadillac Fleetwood \u2502 10.4 \u2502 8 \u2502 472.0 \u2502 205 \u2502 2.93 \u2502 5.250 \u2502 17.98 \u2502 0 \u2502 0 \u2502 3 \u2502 4 \u2502\n\u2502 Lincoln Continental \u2502 10.4 \u2502 8 \u2502 460.0 \u2502 215 \u2502 3.00 \u2502 5.424 \u2502 17.82 \u2502 0 \u2502 0 \u2502 3 \u2502 4 \u2502\n\u2502 Camaro Z28 \u2502 13.3 \u2502 8 \u2502 350.0 \u2502 245 \u2502 3.73 \u2502 3.840 \u2502 15.41 \u2502 0 \u2502 0 \u2502 3 \u2502 4 \u2502\n\u2502 Duster 360 \u2502 14.3 \u2502 8 \u2502 360.0 \u2502 245 \u2502 3.21 \u2502 3.570 \u2502 15.84 \u2502 0 \u2502 0 \u2502 3 \u2502 4 \u2502\n\u2502 Chrysler Imperial \u2502 14.7 \u2502 8 \u2502 440.0 \u2502 230 \u2502 3.23 \u2502 5.345 \u2502 17.42 \u2502 0 \u2502 0 \u2502 3 \u2502 4 \u2502\n\u2502 Maserati Bora \u2502 15.0 \u2502 8 \u2502 301.0 \u2502 335 \u2502 3.54 \u2502 3.570 \u2502 14.60 \u2502 0 \u2502 1 \u2502 5 \u2502 8 \u2502\n\u2502 Merc 450SLC \u2502 15.2 \u2502 8 \u2502 275.8 \u2502 180 \u2502 3.07 \u2502 3.780 \u2502 18.00 \u2502 0 \u2502 0 \u2502 3 \u2502 3 \u2502\n\u2502 AMC Javelin \u2502 15.2 \u2502 8 \u2502 304.0 \u2502 150 \u2502 3.15 \u2502 3.435 \u2502 17.30 \u2502 0 \u2502 0 \u2502 3 \u2502 2 \u2502\n\u2502 Dodge Challenger \u2502 15.5 \u2502 8 \u2502 318.0 \u2502 150 \u2502 2.76 \u2502 3.520 \u2502 16.87 \u2502 0 \u2502 0 \u2502 3 \u2502 2 \u2502\n\u2502 Ford Pantera L \u2502 15.8 \u2502 8 \u2502 351.0 \u2502 264 \u2502 4.22 \u2502 3.170 \u2502 14.50 \u2502 0 \u2502 1 \u2502 5 \u2502 4 \u2502\n\u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n
While TidierDB uses @arrange
like TidierData.jl
@chain t(mtcars) @arrange(mpg) @collect\n
32\u00d712 DataFrame\n Row \u2502 model mpg cyl disp hp drat wt qsec vs am gear carb\n \u2502 String? Float64? Int64? Float64? Int64? Float64? Float64? Float64? Int64? Int64? Int64? Int64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.25 17.98 0 0 3 4\n 2 \u2502 Lincoln Continental 10.4 8 460.0 215 3.0 5.424 17.82 0 0 3 4\n 3 \u2502 Camaro Z28 13.3 8 350.0 245 3.73 3.84 15.41 0 0 3 4\n 4 \u2502 Duster 360 14.3 8 360.0 245 3.21 3.57 15.84 0 0 3 4\n 5 \u2502 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4\n 6 \u2502 Maserati Bora 15.0 8 301.0 335 3.54 3.57 14.6 0 1 5 8\n \u22ee \u2502 \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee\n 27 \u2502 Porsche 914-2 26.0 4 120.3 91 4.43 2.14 16.7 0 1 5 2\n 28 \u2502 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.9 1 1 4 1\n 29 \u2502 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2\n 30 \u2502 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2\n 31 \u2502 Fiat 128 32.4 4 78.7 66 4.08 2.2 19.47 1 1 4 1\n 32 \u2502 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.9 1 1 4 1\n 20 rows omitted\n
"},{"location":"examples/generated/UserGuide/ibis_comp/#selecting-columns","title":"Selecting columns","text":"In Ibis, columns must be prefixed with the table name, or in this case _
, or they can be given as a string. Finally to using helper functions like startswith
requires importing selectors as above.
mtcars.select(s.startswith(\"m\"), \"drat\", _.wt)\n
\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 model \u2503 mpg \u2503 drat \u2503 wt \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 string \u2502 float64 \u2502 float64 \u2502 float64 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Mazda RX4 \u2502 21.0 \u2502 3.90 \u2502 2.620 \u2502\n\u2502 Mazda RX4 Wag \u2502 21.0 \u2502 3.90 \u2502 2.875 \u2502\n\u2502 Datsun 710 \u2502 22.8 \u2502 3.85 \u2502 2.320 \u2502\n\u2502 Hornet 4 Drive \u2502 21.4 \u2502 3.08 \u2502 3.215 \u2502\n\u2502 Hornet Sportabout \u2502 18.7 \u2502 3.15 \u2502 3.440 \u2502\n\u2502 Valiant \u2502 18.1 \u2502 2.76 \u2502 3.460 \u2502\n\u2502 Duster 360 \u2502 14.3 \u2502 3.21 \u2502 3.570 \u2502\n\u2502 Merc 240D \u2502 24.4 \u2502 3.69 \u2502 3.190 \u2502\n\u2502 Merc 230 \u2502 22.8 \u2502 3.92 \u2502 3.150 \u2502\n\u2502 Merc 280 \u2502 19.2 \u2502 3.92 \u2502 3.440 \u2502\n\u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n
TidierDB does not require names to be prefixed and, like TidierData, tidy column selection with starts_with
, ends_with
, and contains
is supported at base. TidierDB also supports providing column names as strings, although this would only be needed in the setting of renaming a column with a space in it.
@chain t(mtcars) @select(starts_with(\"m\"), \"drat\", wt) @collect\n
32\u00d72 DataFrame\n32\u00d74 DataFrame\n Row \u2502 model mpg drat wt\n \u2502 String? Float64? Float64? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Mazda RX4 21.0 3.9 2.62\n 2 \u2502 Mazda RX4 Wag 21.0 3.9 2.875\n 3 \u2502 Datsun 710 22.8 3.85 2.32\n 4 \u2502 Hornet 4 Drive 21.4 3.08 3.215\n 5 \u2502 Hornet Sportabout 18.7 3.15 3.44\n 6 \u2502 Valiant 18.1 2.76 3.46\n \u22ee \u2502 \u22ee \u22ee \u22ee \u22ee\n 27 \u2502 Porsche 914-2 26.0 4.43 2.14\n 28 \u2502 Lotus Europa 30.4 3.77 1.513\n 29 \u2502 Ford Pantera L 15.8 4.22 3.17\n 30 \u2502 Ferrari Dino 19.7 3.62 2.77\n 31 \u2502 Maserati Bora 15.0 3.54 3.57\n 32 \u2502 Volvo 142E 21.4 4.11 2.78\n 20 rows omitted\n
"},{"location":"examples/generated/UserGuide/ibis_comp/#multi-step-queries-and-summarizing","title":"Multi step queries and summarizing","text":"Aggregating data is done with aggregate
in ibis and @summarize
in TidierDB. There is a slight difference in grouping data. Ibis uses by =
within the aggregate
call vs TidierDB adheres to @group_by
convention
mtcars.aggregate(\n total_hp=_.hp.sum(),\n avg_hp=_.hp.mean(),\n having=_.hp.sum() < 1000,\n by=['cyl']\n)\n
\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 cyl \u2503 total_hp \u2503 avg_hp \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 int64 \u2502 int64 \u2502 float64 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 6 \u2502 856 \u2502 122.285714 \u2502\n\u2502 4 \u2502 909 \u2502 82.636364 \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n
In TidierDB, @filter
will automatically determine whether the criteria belong in a WHERE or HAVING in SQL clause.
@chain t(mtcars) begin\n @group_by(cyl)\n @summarize(total_hp = sum(hp),\n avg_hp = avg(hp))\n @filter(total_hp < 1000)\n @collect\nend\n
2\u00d73 DataFrame\n Row \u2502 cyl total_hp avg_hp\n \u2502 Int64? Int128? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 6 856 122.286\n 2 \u2502 4 909 82.6364\n
"},{"location":"examples/generated/UserGuide/ibis_comp/#renaming-columns","title":"Renaming columns","text":"Both tools use rename
/@rename to rename columns
mtcars.rename(make_model = \"model\").select(_.make_model)\n
\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 make_model \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 string \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Mazda RX4 \u2502\n\u2502 Mazda RX4 Wag \u2502\n\u2502 Datsun 710 \u2502\n\u2502 Hornet 4 Drive \u2502\n\u2502 Hornet Sportabout \u2502\n\u2502 Valiant \u2502\n\u2502 Duster 360 \u2502\n\u2502 Merc 240D \u2502\n\u2502 Merc 230 \u2502\n\u2502 Merc 280 \u2502\n\u2502 \u2026 \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n
@chain t(mtcars) @rename(model_make = model) @select(model_make) @collect\n
32\u00d71 DataFrame\n Row \u2502 model_make\n \u2502 String?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Mazda RX4\n 2 \u2502 Mazda RX4 Wag\n 3 \u2502 Datsun 710\n 4 \u2502 Hornet 4 Drive\n 5 \u2502 Hornet Sportabout\n 6 \u2502 Valiant\n \u22ee \u2502 \u22ee\n 27 \u2502 Porsche 914-2\n 28 \u2502 Lotus Europa\n 29 \u2502 Ford Pantera L\n 30 \u2502 Ferrari Dino\n 31 \u2502 Maserati Bora\n 32 \u2502 Volvo 142E\n 20 rows omitted\n
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/key_differences/","title":"Key Differences from TidierData.jl","text":"There are a few important syntax and behavior differences between TidierDB.jl and TidierData.jl outlined below.
"},{"location":"examples/generated/UserGuide/key_differences/#creating-a-database","title":"Creating a database","text":"For these examples we will use DuckDB, the default backend, although SQLite, Postgres, MySQL, MariaDB, MSSQL, and ClickHouse are possible. If you have an existing DuckDB connection, then this step is not required. For these examples, we will create a data frame and copy it to an in-memory DuckDB database.
using DataFrames, TidierDB\n\ndf = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9],\n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10],\n value = repeat(1:5, 2),\n percent = 0.1:0.1:1.0);\n\ndb = connect(duckdb());\n\ncopy_to(db, df, \"df_mem\"); # copying over the data frame to an in-memory database\n
"},{"location":"examples/generated/UserGuide/key_differences/#row-ordering","title":"Row ordering","text":"DuckDB benefits from aggressive parallelization of pipelines. This means that if you have multiple threads enabled in Julia, which you can check or set using Threads.nthreads()
, DuckDB will use multiple threads. However, because many operations are multi-threaded, the resulting row order is inconsistent. If row order needs to be deterministic for your use case, make sure to apply an @arrange(column_name_1, column_name_2, etc...)
prior to collecting the results.
"},{"location":"examples/generated/UserGuide/key_differences/#starting-a-chain","title":"Starting a chain","text":"When using TidierDB, db_table(connection, :table_name)
is used to start a chain.
"},{"location":"examples/generated/UserGuide/key_differences/#grouped-mutation","title":"Grouped mutation","text":"In TidierDB, when performing @group_by
then @mutate
, the table will be ungrouped after applying all of the mutations in the clause to the grouped data. To perform subsequent grouped operations, the user would have to regroup the data. This is demonstrated below.
@chain db_table(db, :df_mem) begin\n @group_by(groups)\n @summarize(mean_percent = mean(percent))\n @collect\n end\n
2\u00d72 DataFrame Rowgroupsmean_percentString?Float64?1bb0.52aa0.6 Regrouping following @mutate
@chain db_table(db, :df_mem) begin\n @group_by(groups)\n @mutate(max = maximum(percent), min = minimum(percent))\n @group_by(groups)\n @summarise(mean_percent = mean(percent))\n @collect\nend\n
2\u00d72 DataFrame Rowgroupsmean_percentString?Float64?1bb0.52aa0.6 "},{"location":"examples/generated/UserGuide/key_differences/#joining","title":"Joining","text":"There is one key difference for joining:
The column on both the new and old table must be specified. They do not need to be the same, and given SQL behavior where both columns are kept when joining two tables, it is preferable if they have different names. This avoids \"ambiguous reference\" errors that would otherwise come up and complicate the use of tidy selection for columns. Athena has an additional slight difference given the need for parameters, which is covered in the Athena documentation page.
df2 = DataFrame(id2 = [\"AA\", \"AC\", \"AE\", \"AG\", \"AI\", \"AK\", \"AM\"],\n category = [\"X\", \"Y\", \"X\", \"Y\", \"X\", \"Y\", \"X\"],\n score = [88, 92, 77, 83, 95, 68, 74]);\n\ncopy_to(db, df2, \"df_join\");\n\n@chain db_table(db, :df_mem) begin\n @left_join(df_join, id2, id)\n @collect\nend\n
10\u00d77 DataFrame Rowidgroupsvaluepercentid2categoryscoreString?String?Int64?Float64?String?String?Int64?1AAbb10.1AAX882ACbb30.3ACY923AEbb50.5AEX774AGbb20.7AGY835AIbb40.9AIX956ABaa20.2missingmissingmissing7ADaa40.4missingmissingmissing8AFaa10.6missingmissingmissing9AHaa30.8missingmissingmissing10AJaa51.0missingmissingmissing "},{"location":"examples/generated/UserGuide/key_differences/#differences-in-case_when","title":"Differences in case_when()
","text":"In TidierDB, after the clause is completed, the result for the new column should is separated by a comma ,
in contrast to TidierData.jl, where the result for the new column is separated by a =>
.
@chain db_table(db, :df_mem) begin\n @mutate(new_col = case_when(percent > .5, \"Pass\", # in TidierData, percent > .5 => \"Pass\",\n percent <= .5, \"Try Again\", # percent <= .5 => \"Try Again\"\n true, \"middle\"))\n @collect\n end\n
10\u00d75 DataFrame Rowidgroupsvaluepercentnew_colString?String?Int64?Float64?String?1AAbb10.1Try Again2ABaa20.2Try Again3ACbb30.3Try Again4ADaa40.4Try Again5AEbb50.5Try Again6AFaa10.6Pass7AGbb20.7Pass8AHaa30.8Pass9AIbb40.9Pass10AJaa51.0Pass "},{"location":"examples/generated/UserGuide/key_differences/#interpolation","title":"Interpolation","text":"To use !! Interpolation, instead of being able to define the alternate names/value in the global context, the user has to use @interpolate
. This will hopefully be fixed in future versions. Otherwise, the behavior is generally the same, although this creates friction around calling functions.
Also, when using interpolation with exponenents, the interpolated value must go inside of parenthesis.
@interpolate((test, :percent)); # this still supports strings, vectors of names, and values\n\n@chain db_table(db, :df_mem) begin\n @mutate(new_col = case_when((!!test)^2 > .5, \"Pass\",\n (!!test)^2 < .5, \"Try Again\",\n \"middle\"))\n @collect\nend\n
10\u00d75 DataFrame\n Row \u2502 id groups value percent new_col\n \u2502 String? String? Int64? Float64? String?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1 Try Again\n 2 \u2502 AB aa 2 0.2 Try Again\n 3 \u2502 AC bb 3 0.3 Try Again\n \u22ee \u2502 \u22ee \u22ee \u22ee \u22ee \u22ee\n 8 \u2502 AH aa 3 0.8 Pass\n 9 \u2502 AI bb 4 0.9 Pass\n 10 \u2502 AJ aa 5 1.0 Pass\n 4 rows omitted\n
"},{"location":"examples/generated/UserGuide/key_differences/#slicing-ties","title":"Slicing ties","text":"slice_min()
and @slice_max()
will always return ties due to SQL behavior.
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/outofmemex/","title":"Working With Larger than RAM Datasets","text":"While using the DuckDB backend, TidierDB's lazy intferace enables querying datasets larger than your available RAM.
To illustrate this, we will recreate the Hugging Face x Polars example. The final table results are shown below and in this Hugging Face x DuckDB example
First we will load TidierDB, set up a local database and then set the URLs for the 2 training datasets from huggingface.co
using TidierDB\ndb = connect(duckdb())\n\nurls = [\"https://huggingface.co/datasets/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/blog_authorship_corpus/train/0000.parquet\",\n \"https://huggingface.co/datasets/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/blog_authorship_corpus/train/0001.parquet\"];\n
Here, we pass the vector of URLs to db_table
, which will not copy them into memory. Since these datasets are so large, we will also set stream = true
in @collect
to stream the results. If we wanted to read all the files in the folder we could have replace the 0000
with *
(wildcard) db_table(db, \"Path/to/folder/*.parquet\")
Of note, reading these files from URLs is not as rapid as reading them from local files.
@chain db_table(db, urls) begin\n @group_by(horoscope)\n @summarise(count = n(), avg_blog_length = mean(length(text)))\n @arrange(desc(count))\n @aside @show_query _\n @collect(stream = true)\nend\n
Placing @aside @show_query _
before @collect
above lets us see the SQL query and collect it to a local DataFrame at the same time.
SELECT horoscope, COUNT(*) AS count, AVG(length(text)) AS avg_blog_length\n FROM read_parquet(['https://huggingface.co/datasets/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/blog_authorship_corpus/train/0000.parquet', 'https://huggingface.co/datasets/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/blog_authorship_corpus/train/0001.parquet'])\n GROUP BY horoscope\n ORDER BY avg_blog_length DESC\n12\u00d73 DataFrame\n Row \u2502 horoscope count avg_blog_length\n \u2502 String? Int64? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Aquarius 49568 1125.83\n 2 \u2502 Cancer 63512 1097.96\n 3 \u2502 Libra 60304 1060.61\n 4 \u2502 Capricorn 49402 1059.56\n 5 \u2502 Sagittarius 50431 1057.46\n 6 \u2502 Leo 58010 1049.6\n 7 \u2502 Taurus 61571 1022.69\n 8 \u2502 Gemini 52925 1020.26\n 9 \u2502 Scorpio 56495 1014.03\n 10 \u2502 Pisces 53812 1011.75\n 11 \u2502 Virgo 64629 996.684\n 12 \u2502 Aries 69134 918.081\n
To learn more about memory efficient queries on larger than RAM files, this blog from DuckDB will help maximize your local db
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/s3viaduckdb/","title":"S3 + DuckDB + TidierDB","text":"TidierDB allows you leverage DuckDB's seamless database integration.
Using DuckDB, you can connect to an AWS or GoogleCloud Database to query directly without making any local copies.
You can also use DBInterface.execute
to set up any DuckDB database connection you need and then use that db to query with TidierDB
using TidierDB\n\n#Connect to Google Cloud via DuckDB\n#google_db = connect(duckdb(), :gbq, access_key=\"string\", secret_key=\"string\")\n\n#Connect to AWS via DuckDB\naws_db = connect(duckdb(), :aws, aws_access_key_id= \"string\",\n aws_secret_access_key= \"string\",\n aws_region=\"us-east-1\")\ns3_csv_path = \"s3://path/to_data.csv\"\n\n@chain db_table(aws_db, s3_csv_path) begin\n @filter(!starts_with(column1, \"M\"))\n @group_by(cyl)\n @summarize(mpg = mean(mpg))\n @mutate(mpg_squared = mpg^2,\n mpg_rounded = round(mpg),\n mpg_efficiency = case_when(\n mpg >= cyl^2 , \"efficient\",\n mpg < 15.2 , \"inefficient\",\n \"moderate\"))\n @filter(mpg_efficiency in (\"moderate\", \"efficient\"))\n @arrange(desc(mpg_rounded))\n @collect\nend\n
2\u00d75 DataFrame\n Row \u2502 cyl mpg mpg_squared mpg_rounded mpg_efficiency\n \u2502 Int64? Float64? Float64? Float64? String?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 4 27.3444 747.719 27.0 efficient\n 2 \u2502 6 19.7333 389.404 20.0 moderate\n
This page was generated using Literate.jl.
"}]}
\ No newline at end of file
+{"config":{"lang":["en"],"separator":"[\\s\\-]+","pipeline":["stopWordFilter"]},"docs":[{"location":"","title":"Home","text":""},{"location":"#what-is-tidierdbjl","title":"What is TidierDB.jl?","text":"TiderDB.jl is a 100% Julia implementation of the dbplyr R package, and similar to Python's ibis package.
The main goal of TidierDB.jl is to bring the syntax of Tidier.jl to multiple SQL backends, making it possible to analyze data directly on databases without needing to copy the entire database into memory.
"},{"location":"#currently-supported-backends-include","title":"Currently supported backends include:","text":" - DuckDB (the default)
duckdb()
- ClickHouse
clickhouse()
- SQLite
sqlite()
- MySQL and MariaDB
mysql()
- MSSQL
mssql()
- Postgres
postgres()
- Athena
athena()
- Snowflake
snowflake()
- Google Big Query
gbq()
- Oracle
oracle()
- Databricks
databricks()
Change the backend using set_sql_mode()
- for example - set_sql_mode(databricks())
"},{"location":"#installation","title":"Installation","text":"For the stable version:
] add TidierDB\n
TidierDB.jl currently supports the following top-level macros:
@arrange
@group_by
@filter
@select
@mutate
, which supports across()
@summarize
and @summarise
, which supports across()
@distinct
@left_join
, @right_join
, @inner_join
, @anti_join
, @full_join
, and @semi_join
(slight syntax differences from TidierData.jl) @count
@slice_min
, @slice_max
, @slice_sample
@window_order
and window_frame
@show_query
@collect
Supported helper functions for most backends include:
across()
desc()
if_else()
and case_when()
n()
starts_with()
, ends_with()
, and contains()
as_float()
, as_integer()
, and as_string()
is_missing()
missing_if()
and replace_missing()
From TidierStrings.jl:
str_detect
, str_replace
, str_replace_all
, str_remove_all
, str_remove
From TidierDates.jl:
year
, month
, day
, hour
, min
, second
, floor_date
, difftime
Supported aggregate functions (as supported by the backend) with more to come
mean
, minimium
, maximum
, std
, sum
, cumsum
, cor
, cov
, var
@summarize
supports any SQL aggregate function in addition to the list above. Simply write the function as written in SQL syntax and it will work
When using the DuckDB backend, if db_table
recieves a file path ( .parquet
, .json
, .csv
, iceberg
or delta
), it does not copy it into memory. This allows for queries on files too big for memory. db_table
also supports S3 bucket locations via DuckDB.
"},{"location":"#what-is-the-recommended-way-to-use-tidierdb","title":"What is the recommended way to use TidierDB?","text":"Typically, you will want to use TidierDB alongside TidierData because there are certain functionality (such as pivoting) which are only supported in TidierData and can only be performed on data frames.
Our recommended path for using TidierDB is to import the package so that there are no namespace conflicts with TidierData. Once TidierDB is integrated with Tidier, then Tidier will automatically load the packages in this fashion.
First, let's develop and execute a query using TidierDB. Notice that all top-level macros and functions originating from TidierDB start with a DB
prefix. Any functions defined within macros do not need to be prefixed within DB
because they are actually pseudofunctions that are in actuality converted into SQL code.
Even though the code reads similarly to TidierData, note that no computational work actually occurs until you run DB.@collect()
, which runs the SQL query and instantiates the result as a DataFrame.
using TidierData\nimport TidierDB as DB\n\ndb = DB.connect(DB.duckdb());\npath_or_name = \"https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv\"\n\n@chain DB.db_table(db, path_or_name) begin\n DB.@filter(!starts_with(model, \"M\"))\n DB.@group_by(cyl)\n DB.@summarize(mpg = mean(mpg))\n DB.@mutate(mpg_squared = mpg^2, \n mpg_rounded = round(mpg), \n mpg_efficiency = case_when(\n mpg >= cyl^2 , \"efficient\",\n mpg < 15.2 , \"inefficient\",\n \"moderate\")) \n DB.@filter(mpg_efficiency in (\"moderate\", \"efficient\"))\n DB.@arrange(desc(mpg_rounded))\n DB.@collect\nend\n
2\u00d75 DataFrame\n Row \u2502 cyl mpg mpg_squared mpg_rounded mpg_efficiency \n \u2502 Int64? Float64? Float64? Float64? String? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 4 27.3444 747.719 27.0 efficient\n 2 \u2502 6 19.7333 389.404 20.0 moderate\n
"},{"location":"#what-if-we-wanted-to-pivot-the-result","title":"What if we wanted to pivot the result?","text":"We cannot do this using TidierDB. However, we can call @pivot_longer()
from TidierData after the result of the query has been instantiated as a DataFrame, like this:
@chain DB.db_table(db, path_or_name) begin\n DB.@filter(!starts_with(model, \"M\"))\n DB.@group_by(cyl)\n DB.@summarize(mpg = mean(mpg))\n DB.@mutate(mpg_squared = mpg^2, \n mpg_rounded = round(mpg), \n mpg_efficiency = case_when(\n mpg >= cyl^2 , \"efficient\",\n mpg < 15.2 , \"inefficient\",\n \"moderate\")) \n DB.@filter(mpg_efficiency in (\"moderate\", \"efficient\"))\n DB.@arrange(desc(mpg_rounded))\n DB.@collect\n @pivot_longer(everything(), names_to = \"variable\", values_to = \"value\")\nend\n
10\u00d72 DataFrame\n Row \u2502 variable value \n \u2502 String Any \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 cyl 4\n 2 \u2502 cyl 6\n 3 \u2502 mpg 27.3444\n 4 \u2502 mpg 19.7333\n 5 \u2502 mpg_squared 747.719\n 6 \u2502 mpg_squared 389.404\n 7 \u2502 mpg_rounded 27.0\n 8 \u2502 mpg_rounded 20.0\n 9 \u2502 mpg_efficiency efficient\n 10 \u2502 mpg_efficiency moderate\n
"},{"location":"#what-sql-query-does-tidierdb-generate-for-a-given-piece-of-julia-code","title":"What SQL query does TidierDB generate for a given piece of Julia code?","text":"We can replace DB.collect()
with DB.@show_query
to reveal the underlying SQL query being generated by TidierDB. To handle complex queries, TidierDB makes heavy use of Common Table Expressions (CTE), which are a useful tool to organize long queries.
@chain DB.db_table(db, path_or_name) begin\n DB.@filter(!starts_with(model, \"M\"))\n DB.@group_by(cyl)\n DB.@summarize(mpg = mean(mpg))\n DB.@mutate(mpg_squared = mpg^2, \n mpg_rounded = round(mpg), \n mpg_efficiency = case_when(\n mpg >= cyl^2 , \"efficient\",\n mpg < 15.2 , \"inefficient\",\n \"moderate\")) \n DB.@filter(mpg_efficiency in (\"moderate\", \"efficient\"))\n DB.@arrange(desc(mpg_rounded))\n DB.@show_query\nend\n
WITH cte_1 AS (\nSELECT *\n FROM mtcars\n WHERE NOT (starts_with(model, 'M'))),\ncte_2 AS (\nSELECT cyl, AVG(mpg) AS mpg\n FROM cte_1\n GROUP BY cyl),\ncte_3 AS (\nSELECT cyl, mpg, POWER(mpg, 2) AS mpg_squared, ROUND(mpg) AS mpg_rounded, CASE WHEN mpg >= POWER(cyl, 2) THEN 'efficient' WHEN mpg < 15.2 THEN 'inefficient' ELSE 'moderate' END AS mpg_efficiency\n FROM cte_2 ),\ncte_4 AS (\nSELECT *\n FROM cte_3\n WHERE mpg_efficiency in ('moderate', 'efficient')) \nSELECT *\n FROM cte_4 \n ORDER BY mpg_rounded DESC\n
"},{"location":"#tidierdb-is-already-quite-fully-featured-supporting-advanced-tidierdata-functions-like-across-for-multi-column-selection","title":"TidierDB is already quite fully-featured, supporting advanced TidierData functions like across()
for multi-column selection.","text":"@chain DB.db_table(db, path_or_name) begin\n DB.@group_by(cyl)\n DB.@summarize(across((starts_with(\"a\"), ends_with(\"s\")), (mean, sum)))\n DB.@collect\nend\n
3\u00d75 DataFrame\n Row \u2502 cyl mean_am mean_vs sum_am sum_vs \n \u2502 Int64? Float64? Float64? Int128? Int128? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 4 0.727273 0.909091 8 10\n 2 \u2502 6 0.428571 0.571429 3 4\n 3 \u2502 8 0.142857 0.0 2 0\n
Bang bang !!
interpolation for columns and values is also supported.
There are a few subtle but important differences from Tidier.jl outlined here.
"},{"location":"#missing-a-function-or-backend","title":"Missing a function or backend?","text":"You can use any existing SQL function within @mutate
with the correct SQL syntax and it should just work.
But if you run into problems please open an issue, and we will be happy to take a look!
"},{"location":"reference/","title":"Reference","text":""},{"location":"reference/#index","title":"Index","text":" TidierDB.connect
TidierDB.copy_to
TidierDB.db_table
TidierDB.@anti_join
TidierDB.@arrange
TidierDB.@collect
TidierDB.@count
TidierDB.@distinct
TidierDB.@filter
TidierDB.@full_join
TidierDB.@group_by
TidierDB.@head
TidierDB.@inner_join
TidierDB.@interpolate
TidierDB.@left_join
TidierDB.@mutate
TidierDB.@rename
TidierDB.@right_join
TidierDB.@select
TidierDB.@semi_join
TidierDB.@slice_max
TidierDB.@slice_min
TidierDB.@slice_sample
TidierDB.@summarise
TidierDB.@summarize
TidierDB.@window_frame
TidierDB.@window_order
"},{"location":"reference/#reference-exported-functions","title":"Reference - Exported functions","text":"# TidierDB.connect
\u2014 Method.
connect(backend; kwargs...)\n
This function establishes a database connection based on the specified backend and connection parameters and sets the SQL mode
Arguments
-
backend
: type specifying the database backend to connect to. Supported backends are:
duckdb()
, sqlite()
(SQLite), mssql()
, mysql()
(for MariaDB and MySQL), clickhouse()
, postgres()
-
kwargs
: Keyword arguments specifying the connection parameters for the selected backend. The required parameters vary depending on the backend:
-
MySQL:
host
: The host name or IP address of the MySQL server. Default is \"localhost\". user
: The username for authentication. Default is an empty string. password
: The password for authentication. db
: The name of the database to connect to (optional). port
: The port number of the MySQL server (optional).
Returns
- A database connection object based on the selected backend.
Examples
# Connect to MySQL\n# conn = connect(mysql(); host=\"localhost\", user=\"root\", password=\"password\", db=\"mydb\")\n# Connect to PostgreSQL using LibPQ\n# conn = connect(postgres(); host=\"localhost\", dbname=\"mydb\", user=\"postgres\", password=\"password\")\n# Connect to ClickHouse\n# conn = connect(clickhouse(); host=\"localhost\", port=9000, database=\"mydb\", user=\"default\", password=\"\")\n# Connect to SQLite\n# conn = connect(sqlite())\n# Connect to Google Big Query\n# conn = connect(gbq(), \"json_user_key_path\", \"project_id\")\n# Connect to Snowflake\n# conn = connect(snowflake(), \"ac_id\", \"token\", \"Database_name\", \"Schema_name\", \"warehouse_name\")\n# Connect to DuckDB\n# connect to Google Cloud via DuckDB\n# google_db = connect(duckdb(), :gbq, access_key=\"string\", secret_key=\"string\")\n# Connect to AWS via DuckDB\n# aws_db = connect2(duckdb(), :aws, aws_access_key_id=get(ENV, \"AWS_ACCESS_KEY_ID\", \"access_key\"), aws_secret_access_key=get(ENV, \"AWS_SECRET_ACCESS_KEY\", \"secret_access key\"), aws_region=get(ENV, \"AWS_DEFAULT_REGION\", \"us-east-1\"))\n# Connect to MotherDuck\n# connect(duckdb(), \"token\") for first connection, vs connect(duckdb(), \"md:\") for reconnection\njulia> db = connect(duckdb())\nDuckDB.Connection(\":memory:\")\n
source
# TidierDB.copy_to
\u2014 Method.
copy_to(conn, df_or_path, \"name\")\n
Allows user to copy a df to the database connection. Currently supports DuckDB, SQLite, MySql
Arguments
-conn
: the database connection -df
: dataframe to be copied or path to serve as source. With DuckDB, path supports .csv, .json, .parquet to be used without copying intermediary df. -name
: name as string for the database to be used
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"test\");\n
source
# TidierDB.db_table
\u2014 Function.
db_table(database, table_name, athena_params, delta = false, iceberg = false)\n
db_table
starts the underlying SQL query struct, adding the metadata and table. If paths are passed directly to db_table instead of a name it will not copy it to memory, but rather ready directly from the file.
Arguments
database
: The Database or connection object -
table_name
: tablename as a string (name, local path, or URL). - CSV/TSV - Parquet - Json - Iceberg - Delta - S3 tables from AWS or Google Cloud
- DuckDB and ClickHouse support vectors of paths and URLs.
- DuckDB and ClickHouse also support use of
*
wildcards to read all files of a type in a location such as: db_table(db, \"Path/to/testing_files/*.parquet\")
delta
: must be true to read delta files iceberg
: must be true to read iceberg finalize_ctes
Example
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> db_table(db, \"df_mem\")\nTidierDB.SQLQuery(\"\", \"df_mem\", \"\", \"\", \"\", \"\", \"\", \"\", false, false, 4\u00d74 DataFrame\n Row \u2502 name type current_selxn table_name \n \u2502 String? String? Int64 String \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 id VARCHAR 1 df_mem\n 2 \u2502 groups VARCHAR 1 df_mem\n 3 \u2502 value BIGINT 1 df_mem\n 4 \u2502 percent DOUBLE 1 df_mem, false, DuckDB.Connection(\":memory:\"), TidierDB.CTE[], 0, nothing)\n
source
# TidierDB.@anti_join
\u2014 Macro.
@anti_join(sql_query, join_table, new_table_col, orignal_table_col)\n
Perform an anti join between two SQL queries based on a specified condition. This syntax here is slightly different than TidierData.jl, however, because SQL does not drop the joining column, for the metadata storage, it is preferrable for the names to be different
Arguments
sql_query
: The primary SQL query to operate on. join_table
: The secondary SQL table to join with the primary query table. new_table_col
: Column from the new table that matches for join. orignal_table_col
: Column from the original table that matches for join.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> df2 = DataFrame(id2 = [\"AA\", \"AC\", \"AE\", \"AG\", \"AI\", \"AK\", \"AM\"],\n category = [\"X\", \"Y\", \"X\", \"Y\", \"X\", \"Y\", \"X\"],\n score = [88, 92, 77, 83, 95, 68, 74]);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> copy_to(db, df2, \"df_join\");\n\njulia> @chain db_table(db, :df_mem) begin\n @anti_join(df_join, id2, id)\n @collect\n end\n5\u00d74 DataFrame\n Row \u2502 id groups value percent \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AB aa 2 0.2\n 2 \u2502 AD aa 4 0.4\n 3 \u2502 AF aa 1 0.6\n 4 \u2502 AH aa 3 0.8\n 5 \u2502 AJ aa 5 1.0\n
source
# TidierDB.@arrange
\u2014 Macro.
@arrange(sql_query, columns...)\n
Order SQL table rows based on specified column(s).
Arguments
sql_query
: The SQL query to operate on. columns
: Columns to order the rows by. Can include multiple columns for nested sorting. Wrap column name with desc()
for descending order.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @arrange(value, desc(percent))\n @collect\n end\n10\u00d74 DataFrame\n Row \u2502 id groups value percent \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AF aa 1 0.6\n 2 \u2502 AA bb 1 0.1\n 3 \u2502 AG bb 2 0.7\n 4 \u2502 AB aa 2 0.2\n 5 \u2502 AH aa 3 0.8\n 6 \u2502 AC bb 3 0.3\n 7 \u2502 AI bb 4 0.9\n 8 \u2502 AD aa 4 0.4\n 9 \u2502 AJ aa 5 1.0\n 10 \u2502 AE bb 5 0.5\n
source
# TidierDB.@collect
\u2014 Macro.
@collect(sql_query, stream = false)\n
db_table
starts the underlying SQL query struct, adding the metadata and table.
Arguments
sql_query
: The SQL query to operate on. stream
: optional streaming for query/execution of results when using duck db. Defaults to false
Example
julia> db = connect(duckdb());\n\njulia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @collect db_table(db, \"df_mem\")\n10\u00d74 DataFrame\n Row \u2502 id groups value percent \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1\n 2 \u2502 AB aa 2 0.2\n 3 \u2502 AC bb 3 0.3\n 4 \u2502 AD aa 4 0.4\n 5 \u2502 AE bb 5 0.5\n 6 \u2502 AF aa 1 0.6\n 7 \u2502 AG bb 2 0.7\n 8 \u2502 AH aa 3 0.8\n 9 \u2502 AI bb 4 0.9\n 10 \u2502 AJ aa 5 1.0\n
source
# TidierDB.@count
\u2014 Macro.
@count(sql_query, columns...)\n
Count the number of rows grouped by specified column(s).
Arguments
sql_query
: The SQL query to operate on. columns
: Columns to group by before counting. If no columns are specified, counts all rows in the query.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @count(groups)\n @arrange(groups)\n @collect\n end\n2\u00d72 DataFrame\n Row \u2502 groups count \n \u2502 String? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 aa 5\n 2 \u2502 bb 5\n
source
# TidierDB.@distinct
\u2014 Macro.
@distinct(sql_query, columns...)\n
Select distinct rows based on specified column(s). Distinct works differently in TidierData vs SQL and therefore TidierDB. Distinct will also select only the only columns it is given (or all if given none)
Arguments
sql_query
: The SQL query to operate on. columns
: Columns to determine uniqueness. If no columns are specified, all columns are used to identify distinct rows.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @distinct(value)\n @arrange(value)\n @collect\n end\n5\u00d71 DataFrame\n Row \u2502 value \n \u2502 Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 1\n 2 \u2502 2\n 3 \u2502 3\n 4 \u2502 4\n 5 \u2502 5\n\njulia> @chain db_table(db, :df_mem) begin\n @distinct\n @arrange(id)\n @collect\n end\n10\u00d74 DataFrame\n Row \u2502 id groups value percent \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1\n 2 \u2502 AB aa 2 0.2\n 3 \u2502 AC bb 3 0.3\n 4 \u2502 AD aa 4 0.4\n 5 \u2502 AE bb 5 0.5\n 6 \u2502 AF aa 1 0.6\n 7 \u2502 AG bb 2 0.7\n 8 \u2502 AH aa 3 0.8\n 9 \u2502 AI bb 4 0.9\n 10 \u2502 AJ aa 5 1.0\n
source
# TidierDB.@filter
\u2014 Macro.
@filter(sql_query, conditions...)\n
Filter rows in a SQL table based on specified conditions.
Arguments
sql_query
: The SQL query to filter rows from. -
conditions
: Expressions specifying the conditions that rows must satisfy to be included in the output. Rows for which the expression evaluates to true
will be included in the result. Multiple conditions can be combined using logical operators (&&
, ||
). It will automatically detect whether the conditions belong in WHERE vs HAVING.
Temporarily, it is best to use begin and end when filtering multiple conditions. (ex 2 below)\n
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @filter(percent > .5)\n @collect\n end\n5\u00d74 DataFrame\n Row \u2502 id groups value percent \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AF aa 1 0.6\n 2 \u2502 AG bb 2 0.7\n 3 \u2502 AH aa 3 0.8\n 4 \u2502 AI bb 4 0.9\n 5 \u2502 AJ aa 5 1.0\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @summarise(mean = mean(percent))\n @filter begin \n groups == \"bb\" || # logical operators can still be used like this\n mean > .5\n end\n @arrange(groups)\n @collect\n end\n2\u00d72 DataFrame\n Row \u2502 groups mean \n \u2502 String? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 aa 0.6\n 2 \u2502 bb 0.5\n
source
# TidierDB.@full_join
\u2014 Macro.
@inner_join(sql_query, join_table, new_table_col, orignal_table_col)\n
Perform an full join between two SQL queries based on a specified condition. This syntax here is slightly different than TidierData.jl, however, because SQL does not drop the joining column, for the metadata storage, it is preferrable for the names to be different
Arguments
sql_query
: The primary SQL query to operate on. join_table
: The secondary SQL table to join with the primary query table. new_table_col
: Column from the new table that matches for join. orignal_table_col
: Column from the original table that matches for join.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> df2 = DataFrame(id2 = [\"AA\", \"AC\", \"AE\", \"AG\", \"AI\", \"AK\", \"AM\"],\n category = [\"X\", \"Y\", \"X\", \"Y\", \"X\", \"Y\", \"X\"],\n score = [88, 92, 77, 83, 95, 68, 74]);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> copy_to(db, df2, \"df_join\");\n\njulia> @chain db_table(db, :df_mem) begin\n @full_join(df_join, id2, id)\n @collect\n end\n12\u00d77 DataFrame\n Row \u2502 id groups value percent id2 category score \n \u2502 String? String? Int64? Float64? String? String? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1 AA X 88\n 2 \u2502 AC bb 3 0.3 AC Y 92\n 3 \u2502 AE bb 5 0.5 AE X 77\n 4 \u2502 AG bb 2 0.7 AG Y 83\n 5 \u2502 AI bb 4 0.9 AI X 95\n 6 \u2502 AB aa 2 0.2 missing missing missing \n 7 \u2502 AD aa 4 0.4 missing missing missing \n 8 \u2502 AF aa 1 0.6 missing missing missing \n 9 \u2502 AH aa 3 0.8 missing missing missing \n 10 \u2502 AJ aa 5 1.0 missing missing missing \n 11 \u2502 missing missing missing missing AK Y 68\n 12 \u2502 missing missing missing missing AM X 74\n
source
# TidierDB.@group_by
\u2014 Macro.
@group_by(sql_query, columns...)\n
Group SQL table rows by specified column(s). If grouping is performed as a terminal operation without a subsequent mutatation or summarization (as in the example below), then the resulting data frame will be ungrouped when @collect
is applied.
Arguments
sql_query
: The SQL query to operate on. exprs
: Expressions specifying the columns to group by. Columns can be specified by name.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @arrange(groups)\n @collect\n end\n2\u00d71 DataFrame\n Row \u2502 groups \n \u2502 String? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 aa\n 2 \u2502 bb\n
source
# TidierDB.@head
\u2014 Macro.
@head(sql_query, value)\n
Limit SQL table number of rows returned based on specified value. LIMIT
in SQL
Arguments
sql_query
: The SQL query to operate on. value
: Number to limit how many rows are returned.
Examples
julia> db = connect(duckdb());\n\njulia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> copy_to(db, df, \"df_mem\"); \n\njulia> @chain db_table(db, :df_mem) begin\n @head(1) ## supports expressions ie `3-2` would return the same df below\n @collect\n end\n1\u00d74 DataFrame\n Row \u2502 id groups value percent \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1\n
source
# TidierDB.@inner_join
\u2014 Macro.
@inner_join(sql_query, join_table, new_table_col, orignal_table_col)\n
Perform an inner join between two SQL queries based on a specified condition. This syntax here is slightly different than TidierData.jl, however, because SQL does not drop the joining column, for the metadata storage, it is preferrable for the names to be different
Arguments
sql_query
: The primary SQL query to operate on. join_table
: The secondary SQL table to join with the primary query table. new_table_col
: Column from the new table that matches for join. orignal_table_col
: Column from the original table that matches for join.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> df2 = DataFrame(id2 = [\"AA\", \"AC\", \"AE\", \"AG\", \"AI\", \"AK\", \"AM\"],\n category = [\"X\", \"Y\", \"X\", \"Y\", \"X\", \"Y\", \"X\"],\n score = [88, 92, 77, 83, 95, 68, 74]);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> copy_to(db, df2, \"df_join\");\n\njulia> @chain db_table(db, :df_mem) begin\n @inner_join(df_join, id2, id)\n @collect\n end\n5\u00d77 DataFrame\n Row \u2502 id groups value percent id2 category score \n \u2502 String? String? Int64? Float64? String? String? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1 AA X 88\n 2 \u2502 AC bb 3 0.3 AC Y 92\n 3 \u2502 AE bb 5 0.5 AE X 77\n 4 \u2502 AG bb 2 0.7 AG Y 83\n 5 \u2502 AI bb 4 0.9 AI X 95\n
source
# TidierDB.@interpolate
\u2014 Macro.
@interpolate(args...)\n
Interpolate parameters into expressions for database queries.
Arguments
-
args...
: A variable number of tuples. Each tuple should contain:
name
: The name of the parameter to interpolate. value
: (Any): The value/vector to interpolate for the corresponding parameter name.
Example
julia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> col_names = [:id, :value, :percent];\n\njulia> cond1 = .2;\n\njulia> cond2 = 5;\n\njulia> @interpolate((condition1, cond1), (columns, col_names), (condition2, cond2));\n\njulia> @chain db_table(db, \"df_mem\") begin \n @select(!!columns)\n @filter begin \n percent < !!condition1\n value < !!condition2\n end\n @collect\n end\n1\u00d73 DataFrame\n Row \u2502 id value percent \n \u2502 String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA 1 0.1\n
source
# TidierDB.@left_join
\u2014 Macro.
@left_join(sql_query, join_table, new_table_col, orignal_table_col)\n
Perform a left join between two SQL queries based on a specified condition. This syntax here is slightly different than TidierData.jl, however, because SQL does not drop the joining column, for the metadata storage, it is preferrable for the names to be different
Arguments
sql_query
: The primary SQL query to operate on. join_table
: The secondary SQL table to join with the primary query table. new_table_col
: Column from the new table that matches for join. orignal_table_col
: Column from the original table that matches for join.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> df2 = DataFrame(id2 = [\"AA\", \"AC\", \"AE\", \"AG\", \"AI\", \"AK\", \"AM\"],\n category = [\"X\", \"Y\", \"X\", \"Y\", \"X\", \"Y\", \"X\"],\n score = [88, 92, 77, 83, 95, 68, 74]);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> copy_to(db, df2, \"df_join\");\n\njulia> @chain db_table(db, :df_mem) begin\n @left_join(df_join, id2, id)\n @collect\n end\n10\u00d77 DataFrame\n Row \u2502 id groups value percent id2 category score \n \u2502 String? String? Int64? Float64? String? String? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1 AA X 88\n 2 \u2502 AC bb 3 0.3 AC Y 92\n 3 \u2502 AE bb 5 0.5 AE X 77\n 4 \u2502 AG bb 2 0.7 AG Y 83\n 5 \u2502 AI bb 4 0.9 AI X 95\n 6 \u2502 AB aa 2 0.2 missing missing missing \n 7 \u2502 AD aa 4 0.4 missing missing missing \n 8 \u2502 AF aa 1 0.6 missing missing missing \n 9 \u2502 AH aa 3 0.8 missing missing missing \n 10 \u2502 AJ aa 5 1.0 missing missing missing \n
source
# TidierDB.@mutate
\u2014 Macro.
@mutate(sql_query, exprs...)\n
Mutate SQL table rows by adding new columns or modifying existing ones.
Arguments
sql_query
: The SQL query to operate on. exprs
: Expressions for mutating the table. New columns can be added or existing columns modified using column_name = expression syntax, where expression can involve existing columns.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @mutate(value = value * 4, new_col = percent^2)\n @collect\n end\n10\u00d75 DataFrame\n Row \u2502 id groups value percent new_col \n \u2502 String? String? Int64? Float64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 4 0.1 0.01\n 2 \u2502 AB aa 8 0.2 0.04\n 3 \u2502 AC bb 12 0.3 0.09\n 4 \u2502 AD aa 16 0.4 0.16\n 5 \u2502 AE bb 20 0.5 0.25\n 6 \u2502 AF aa 4 0.6 0.36\n 7 \u2502 AG bb 8 0.7 0.49\n 8 \u2502 AH aa 12 0.8 0.64\n 9 \u2502 AI bb 16 0.9 0.81\n 10 \u2502 AJ aa 20 1.0 1.0\n
source
# TidierDB.@rename
\u2014 Macro.
@rename(sql_query, renamings...)\n
Rename one or more columns in a SQL query.
Arguments
-sql_query
: The SQL query to operate on. -renamings
: One or more pairs of old and new column names, specified as new name = old name
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @rename(new_name = percent)\n @collect\n end\n10\u00d74 DataFrame\n Row \u2502 id groups value new_name \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1\n 2 \u2502 AB aa 2 0.2\n 3 \u2502 AC bb 3 0.3\n 4 \u2502 AD aa 4 0.4\n 5 \u2502 AE bb 5 0.5\n 6 \u2502 AF aa 1 0.6\n 7 \u2502 AG bb 2 0.7\n 8 \u2502 AH aa 3 0.8\n 9 \u2502 AI bb 4 0.9\n 10 \u2502 AJ aa 5 1.0\n
source
# TidierDB.@right_join
\u2014 Macro.
@right_join(sql_query, join_table, new_table_col, orignal_table_col)\n
Perform a right join between two SQL queries based on a specified condition. This syntax here is slightly different than TidierData.jl, however, because SQL does not drop the joining column, for the metadata storage, it is preferrable for the names to be different
Arguments
sql_query
: The primary SQL query to operate on. join_table
: The secondary SQL table to join with the primary query table. new_table_col
: Column from the new table that matches for join. orignal_table_col
: Column from the original table that matches for join.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> df2 = DataFrame(id2 = [\"AA\", \"AC\", \"AE\", \"AG\", \"AI\", \"AK\", \"AM\"],\n category = [\"X\", \"Y\", \"X\", \"Y\", \"X\", \"Y\", \"X\"],\n score = [88, 92, 77, 83, 95, 68, 74]);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> copy_to(db, df2, \"df_join\");\n\njulia> @chain db_table(db, :df_mem) begin\n @right_join(df_join, id2, id)\n @collect\n end\n7\u00d77 DataFrame\n Row \u2502 id groups value percent id2 category score \n \u2502 String? String? Int64? Float64? String? String? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1 AA X 88\n 2 \u2502 AC bb 3 0.3 AC Y 92\n 3 \u2502 AE bb 5 0.5 AE X 77\n 4 \u2502 AG bb 2 0.7 AG Y 83\n 5 \u2502 AI bb 4 0.9 AI X 95\n 6 \u2502 missing missing missing missing AK Y 68\n 7 \u2502 missing missing missing missing AM X 74\n
source
# TidierDB.@select
\u2014 Macro.
@select(sql_query, columns)\n
Select specified columns from a SQL table.
Arguments
sql_query
: The SQL query to select columns from. columns
: Expressions specifying the columns to select. Columns can be specified by name, and new columns can be created with expressions using existing column values.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @select(groups:percent)\n @collect\n end\n10\u00d73 DataFrame\n Row \u2502 groups value percent \n \u2502 String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 bb 1 0.1\n 2 \u2502 aa 2 0.2\n 3 \u2502 bb 3 0.3\n 4 \u2502 aa 4 0.4\n 5 \u2502 bb 5 0.5\n 6 \u2502 aa 1 0.6\n 7 \u2502 bb 2 0.7\n 8 \u2502 aa 3 0.8\n 9 \u2502 bb 4 0.9\n 10 \u2502 aa 5 1.0\n\njulia> @chain db_table(db, :df_mem) begin\n @select(contains(\"e\"))\n @collect\n end\n10\u00d72 DataFrame\n Row \u2502 value percent \n \u2502 Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 1 0.1\n 2 \u2502 2 0.2\n 3 \u2502 3 0.3\n 4 \u2502 4 0.4\n 5 \u2502 5 0.5\n 6 \u2502 1 0.6\n 7 \u2502 2 0.7\n 8 \u2502 3 0.8\n 9 \u2502 4 0.9\n 10 \u2502 5 1.0\n
source
# TidierDB.@semi_join
\u2014 Macro.
@semi_join(sql_query, join_table, new_table_col, orignal_table_col)\n
Perform an semi join between two SQL queries based on a specified condition. This syntax here is slightly different than TidierData.jl, however, because SQL does not drop the joining column, for the metadata storage, it is preferrable for the names to be different
Arguments
sql_query
: The primary SQL query to operate on. join_table
: The secondary SQL table to join with the primary query table. new_table_col
: Column from the new table that matches for join. orignal_table_col
: Column from the original table that matches for join.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> df2 = DataFrame(id2 = [\"AA\", \"AC\", \"AE\", \"AG\", \"AI\", \"AK\", \"AM\"],\n category = [\"X\", \"Y\", \"X\", \"Y\", \"X\", \"Y\", \"X\"],\n score = [88, 92, 77, 83, 95, 68, 74]);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> copy_to(db, df2, \"df_join\");\n\njulia> @chain db_table(db, :df_mem) begin\n @semi_join(df_join, id2, id)\n @collect\n end\n5\u00d74 DataFrame\n Row \u2502 id groups value percent \n \u2502 String? String? Int64? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1\n 2 \u2502 AC bb 3 0.3\n 3 \u2502 AE bb 5 0.5\n 4 \u2502 AG bb 2 0.7\n 5 \u2502 AI bb 4 0.9\n
source
# TidierDB.@slice_max
\u2014 Macro.
@slice_max(sql_query, column, n = 1)\n
Select rows with the largest values in specified column. This will always return ties.
Arguments
sql_query
: The SQL query to operate on. column
: Column to identify the smallest values. n
: The number of rows to select with the largest values for each specified column. Default is 1, which selects the row with the smallest value.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @slice_max(value, n = 2)\n @collect\n end;\n\njulia> @chain db_table(db, :df_mem) begin\n @slice_max(value)\n @collect\n end\n2\u00d75 DataFrame\n Row \u2502 id groups value percent rank_col \n \u2502 String? String? Int64? Float64? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AE bb 5 0.5 1\n 2 \u2502 AJ aa 5 1.0 1\n
source
# TidierDB.@slice_min
\u2014 Macro.
@slice_min(sql_query, column, n = 1)\n
Select rows with the smallest values in specified column. This will always return ties.
Arguments
sql_query
: The SQL query to operate on. column
: Column to identify the smallest values. n
: The number of rows to select with the smallest values for each specified column. Default is 1, which selects the row with the smallest value.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @slice_min(value, n = 2)\n @collect\n end;\n\njulia> @chain db_table(db, :df_mem) begin\n @slice_min(value)\n @collect\n end\n2\u00d75 DataFrame\n Row \u2502 id groups value percent rank_col \n \u2502 String? String? Int64? Float64? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1 1\n 2 \u2502 AF aa 1 0.6 1\n
source
# TidierDB.@slice_sample
\u2014 Macro.
@slice_sample(sql_query, n)\n
Randomly select a specified number of rows from a SQL table.
Arguments
sql_query
: The SQL query to operate on. n
: The number of rows to randomly select.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @slice_sample(n = 2)\n @collect\n end;\n\njulia> @chain db_table(db, :df_mem) begin\n @slice_sample()\n @collect\n end;\n
source
# TidierDB.@summarise
\u2014 Macro.
@summarise(sql_query, exprs...)\n
Aggregate and summarize specified columns of a SQL table.
Arguments
sql_query
: The SQL query to operate on. exprs
: Expressions defining the aggregation and summarization operations. These can specify simple aggregations like mean, sum, and count, or more complex expressions involving existing column values.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @summarise(across((value:percent), (mean, sum)))\n @arrange(groups)\n @collect\n end\n2\u00d75 DataFrame\n Row \u2502 groups mean_value mean_percent sum_value sum_percent \n \u2502 String? Float64? Float64? Int128? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 aa 3.0 0.6 15 3.0\n 2 \u2502 bb 3.0 0.5 15 2.5\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @summarise(test = sum(percent), n = n())\n @arrange(groups)\n @collect\n end\n2\u00d73 DataFrame\n Row \u2502 groups test n \n \u2502 String? Float64? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 aa 3.0 5\n 2 \u2502 bb 2.5 5\n
source
# TidierDB.@summarize
\u2014 Macro.
@summarize(sql_query, exprs...)\n
Aggregate and summarize specified columns of a SQL table.
Arguments
sql_query
: The SQL query to operate on. exprs
: Expressions defining the aggregation and summarization operations. These can specify simple aggregations like mean, sum, and count, or more complex expressions involving existing column values.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @summarise(across((ends_with(\"e\"), starts_with(\"p\")), (mean, sum)))\n @arrange(groups)\n @collect\n end\n2\u00d75 DataFrame\n Row \u2502 groups mean_value mean_percent sum_value sum_percent \n \u2502 String? Float64? Float64? Int128? Float64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 aa 3.0 0.6 15 3.0\n 2 \u2502 bb 3.0 0.5 15 2.5\n\njulia> @chain db_table(db, :df_mem) begin\n @group_by(groups)\n @summarise(test = sum(percent), n = n())\n @arrange(groups)\n @collect\n end\n2\u00d73 DataFrame\n Row \u2502 groups test n \n \u2502 String? Float64? Int64? \n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 aa 3.0 5\n 2 \u2502 bb 2.5 5\n
source
# TidierDB.@window_frame
\u2014 Macro.
@window_frame(sql_query, frame_start::Int, frame_end::Int)\n
Define the window frame for window functions in a SQL query, specifying the range of rows to include in the calculation relative to the current row.
Arguments
sql_query: The SQL query to operate on, expected to be an instance of SQLQuery.
frame_start
: The starting point of the window frame. A positive value indicates the start after the current row (FOLLOWING), a negative value indicates before the current row (PRECEDING), and 0 indicates the current row. frame_end
: The ending point of the window frame. A positive value indicates the end after the current row (FOLLOWING), a negative value indicates before the current row (PRECEDING), and 0 indicates the current row.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n
source
# TidierDB.@window_order
\u2014 Macro.
@window_order(sql_query, columns...)\n
Specify the order of rows for window functions within a SQL query.
Arguments
sql_query
: The SQL query to operate on. columns
: Columns to order the rows by for the window function. Can include multiple columns for nested sorting. Prepend a column name with - for descending order.
Examples
julia> df = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9], \n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10], \n value = repeat(1:5, 2), \n percent = 0.1:0.1:1.0);\n\njulia> db = connect(duckdb());\n\njulia> copy_to(db, df, \"df_mem\");\n
source
"},{"location":"reference/#reference-internal-functions","title":"Reference - Internal functions","text":""},{"location":"examples/generated/UserGuide/Snowflake/","title":"Using Snowflake","text":"Establishing a connection with the Snowflake SQL Rest API requires a OAuth token specific to the Role the user will use to query tables with.
"},{"location":"examples/generated/UserGuide/Snowflake/#connecting","title":"Connecting","text":"Connection is established with the connect
function as shown below. Connection requires 5 items as strings
- Account Identifier
- OAuth token
- Database Name
- Schema Name
- Compute Warehouse name
Two things to note:
- Your OAuth Token may frequently expire, which may require you to rerun your connection line.
-
Since each time db_table
runs, it runs a query to pull the metadata, you may choose to use run db_table
and save the results, and use these results withfrom_query()
- This will reduce the number of queries to your database
- Allow you to build a a SQL query and
@show_query
even if the OAuthtoken has expired. To @collect
you will have to reconnect and rerun dbtable if your OAuth token has expired
set_sql_mode(snowflake())\nac_id = \"string_id\"\ntoken = \"OAuth_token_string\"\ncon = connect(:snowflake, ac_id, token, \"DEMODB\", \"PUBLIC\", \"COMPUTE_WH\")\n# After connection is established, a you may begin querying.\nstable_table_metadata = db_table(con, \"MTCARS\")\n@chain from_query(stable_table_metadata) begin\n @select(WT)\n @mutate(TEST = WT *2)\n #@aside @show_query _\n @collect\nend\n
32\u00d72 DataFrame\n Row \u2502 WT TEST\n \u2502 Float64 Float64\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 2.62 5.24\n 2 \u2502 2.875 5.75\n 3 \u2502 2.32 4.64\n 4 \u2502 3.215 6.43\n \u22ee \u2502 \u22ee \u22ee\n 29 \u2502 3.17 6.34\n 30 \u2502 2.77 5.54\n 31 \u2502 3.57 7.14\n 32 \u2502 2.78 5.56\n 24 rows omitted\n
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/athena/","title":"Using Athena","text":"To use the Athena AWS backend with TidierDB, set up and a small syntax difference are covered here.
"},{"location":"examples/generated/UserGuide/athena/#connecting","title":"Connecting","text":"Connection is established through AWS.jl as shwon below.
using TidierDB, AWS\nset_sql_mode(athena())\n# Replace your credentials as needed below\naws_access_key_id = get(ENV,\"AWS_ACCESS_KEY_ID\",\"key\")\naws_secret_access_key = get(ENV, \"AWS_SECRET_ACCESS_KEY\",\"secret_key\")\naws_region = get(ENV,\"AWS_DEFAULT_REGION\",\"region\")\n\nconst AWS_GLOBAL_CONFIG = Ref{AWS.AWSConfig}()\ncreds = AWSCredentials(aws_access_key_id, aws_secret_access_key)\n\nAWS_GLOBAL_CONFIG[] = AWS.global_aws_config(region=aws_region, creds=creds)\n\ncatalog = \"AwsDataCatalog\"\nworkgroup = \"primary\"\ndb = \"demodb\"\nall_results = true\nresults_per_increment = 10\nout_loc = \"s3://location/\"\n\nathena_params = Dict(\n \"ResultConfiguration\" => Dict(\n \"OutputLocation\" => out_loc\n ),\n \"QueryExecutionContext\" => Dict(\n \"Database\" => db,\n \"Catalog\" => catalog\n ),\n \"Workgroup\" => workgroup\n)\n
"},{"location":"examples/generated/UserGuide/athena/#db_table-differences","title":"db_table
differences","text":"There are two differences for db_table
which are seen in the query below
- The table needs to be passed as a string in the format database.table, ie
\"demodb.table_name
db_table
requires a third argument: the athena_params from above.
"},{"location":"examples/generated/UserGuide/athena/#leveraging-from_query-with-athena-to-reduce-number-of-queries","title":"Leveraging from_query
with Athena to reduce number of queries","text":"Throughout TidierDB, each time db_table
is called, it queries the databases to get the metadata. Consider how AWS Athena logs queries, a user may want to reduce the number of queries. This can be done saving the results of db_table
, and then using from_query with those results for furthe queries as shown below.
mtcars = db_table(AWS_GLOBAL_CONFIG[], \"demodb.mtcars\", athena_params)\n@chain from_query(mtcars) begin\n @filter(cyl > 4)\n @group_by(cyl)\n @summarize(mpg = mean(mpg))\n #@show_query\n @collect\nend\n
2\u00d72 DataFrame\n Row \u2502 cyl mpg\n \u2502 Int64 Float64\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 6 19.7429\n 2 \u2502 8 15.1\n
I would like to acknowledge the work of Manu Francis and this blog post, which helped guide this process
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/databricks/","title":"Using Databricks","text":"Establishing a connection with the Databricks SQL Rest API requires a token.
"},{"location":"examples/generated/UserGuide/databricks/#connecting","title":"Connecting","text":"Connection is established with the connect
function as shown below. Connection requires 5 items as strings
- Account Instance : how to find your instance
- OAuth token : how to generate your token
- Database Name
- Schema Name
- warehouse_id
One thing to note, Since each time db_table
runs, it runs a query to pull the metadata, you may choose to use run db_table
and save the results, and use these results with from_query()
. This will reduce the number of queries to your database and is illustrated below.
set_sql_mode(databricks())\ninstance_id = \"string_id\"\ntoken \"string_token\"\nwarehouse_id = \"e673cd4f387f964a\"\ncon = connect(:databricks, instance_id, token, \"DEMODB\", \"PUBLIC\", warehouse_id)\n# After connection is established, a you may begin querying.\nstable_table_metadata = db_table(con, \"mtcars\")\n@chain from_query(stable_table_metadata) begin\n @select(wt)\n @mutate(test = wt *2)\n #@aside @show_query _\n @collect\nend\n
32\u00d72 DataFrame\n Row \u2502 wt test\n \u2502 Float64 Float64\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 2.62 5.24\n 2 \u2502 2.875 5.75\n 3 \u2502 2.32 4.64\n 4 \u2502 3.215 6.43\n \u22ee \u2502 \u22ee \u22ee\n 29 \u2502 3.17 6.34\n 30 \u2502 2.77 5.54\n 31 \u2502 3.57 7.14\n 32 \u2502 2.78 5.56\n 24 rows omitted\n
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/from_queryex/","title":"Reusing Part of a Query","text":"While using TidierDB, you may need to generate part of a query and reuse it multiple times. from_query()
enables a query portion to be reused multiple times as shown below.
import TidierDB as DB\ncon = DB.connect(duckdb())\nmtcars_path = \"https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv\"\n
Start a query to analyze fuel efficiency by number of cylinders. However, to further build on this query later, end the chain without using @show_query
or @collect
query = DB.@chain DB.db_table(con, mtcars_path) begin\n DB.@group_by cyl\n DB.@summarize begin\n across(mpg, (mean, minimum, maximum))\n num_cars = n()\n end\n DB.@mutate begin\n efficiency = case_when(\n mean_mpg >= 25, \"High\",\n mean_mpg >= 15, \"Moderate\",\n \"Low\" )\n end\nend;\n
Now, from_query
will allow you to reuse the query to calculate the average horsepower for each efficiency category
DB.@chain DB.from_query(query) begin\n DB.@left_join(mtcars2, cyl, cyl)\n DB.@group_by(efficiency)\n DB.@summarize(avg_hp = mean(hp))\n DB.@collect\nend\n
2\u00d72 DataFrame\n Row \u2502 efficiency avg_hp\n \u2502 String? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Moderate 180.238\n 2 \u2502 High 82.6364\n
Reuse the query again to find the car with the highest MPG for each cylinder category
DB.@chain DB.from_query(query) begin\n DB.@left_join(mtcars2, cyl, cyl)\n DB.@group_by cyl\n DB.@slice_max(mpg)\n DB.@select model cyl mpg\n DB.@collect\nend\n
3\u00d73 DataFrame\n Row \u2502 model cyl mpg\n \u2502 String? Int64? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Pontiac Firebird 8 19.2\n 2 \u2502 Toyota Corolla 4 33.9\n 3 \u2502 Hornet 4 Drive 6 21.4\n
"},{"location":"examples/generated/UserGuide/from_queryex/#preview-or-save-an-intermediate-table","title":"Preview or save an intermediate table","text":"While querying a dataset, you may wish to see an intermediate table, or even save it. You can use @aside
and from_query(_)
, illustrated below, to do just that. While we opted to print the results in this simple example below, we could have saved them by using name = DB.@chain...
import ClickHouse;\nconn = conn = DB.connect(DB.clickhouse(); host=\"localhost\", port=19000, database=\"default\", user=\"default\", password=\"\")\npath = \"https://huggingface.co/datasets/maharshipandya/spotify-tracks-dataset/resolve/refs%2Fconvert%2Fparquet/default/train/0000.parquet\"\nDB.@chain DB.db_table(conn, path) begin\n DB.@count(cyl)\n @aside println(DB.@chain DB.from_query(_) DB.@head(5) DB.@collect)\n DB.@arrange(desc(count))\n DB.@collect\nend\n
5\u00d72 DataFrame\n Row \u2502 artists count\n \u2502 String? UInt64\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 missing 1\n 2 \u2502 Wizo 3\n 3 \u2502 MAGIC! 3\n 4 \u2502 Macaco 1\n 5 \u2502 SOYOU 1\n31438\u00d72 DataFrame\n Row \u2502 artists count\n \u2502 String? UInt64\n\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 The Beatles 279\n 2 \u2502 George Jones 271\n 3 \u2502 Stevie Wonder 236\n 4 \u2502 Linkin Park 224\n 5 \u2502 Ella Fitzgerald 222\n 6 \u2502 Prateek Kuhad 217\n 7 \u2502 Feid 202\n \u22ee \u2502 \u22ee \u22ee\n 31432 \u2502 Leonard 1\n 31433 \u2502 marcos g 1\n 31434 \u2502 BLVKSHP 1\n 31435 \u2502 Memtrix 1\n 31436 \u2502 SOYOU 1\n 31437 \u2502 Macaco 1\n 31438 \u2502 missing 1\n 31424 rows omitted\n
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/functions_pass_to_DB/","title":"Writing Functions/Macros with TidierDB Chains","text":"How can functions pass arguments to a TidierDB chain?
In short, you have to use a macro instead in conjuction with @interpolate
"},{"location":"examples/generated/UserGuide/functions_pass_to_DB/#setting-up-the-macro","title":"Setting up the macro","text":"To write a macro that will take arguments and pass them to a TidierDB chain, there are 3 steps:
- Write macro with the desired argument(s), and, after the quote, add the chain. Arguments to be changed/interpolated must be prefixed with
!!
- Use
@interpolate
to make these arguemnts accessible to the chain. @interpolate
takes touples as argument (one for the !!
name, and one for the actual content you want the chain to use) - Run
@interpolate
and then the chain macro sequentially
using TidierDB\ndb = connect(duckdb())\npath = \"https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv\"\ncopy_to(db, path, \"mtcars\");\n\n# STEP 1\nmacro f1(conditions, columns) # The arguemnt names will be names of the `!!` values\n return quote\n # add chain here\n @chain db_table(db, :mtcars) begin\n @filter(!!conditions > 3)\n @select(!!columns)\n @aside @show_query _\n @collect\n end # ends the chain\n end # ends the quote.\nend # ends the macro\n
# STEP 2\nvariable = :gear;\ncols = [:model, :mpg, :gear, :wt];\n@interpolate((conditions, variable), (columns, cols));\n@f1(variable, cols)\n
17\u00d74 DataFrame\n Row \u2502 model mpg gear wt\n \u2502 String? Float64? Int32? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Mazda RX4 21.0 4 2.62\n 2 \u2502 Mazda RX4 Wag 21.0 4 2.875\n 3 \u2502 Datsun 710 22.8 4 2.32\n \u22ee \u2502 \u22ee \u22ee \u22ee \u22ee\n 15 \u2502 Ferrari Dino 19.7 5 2.77\n 16 \u2502 Maserati Bora 15.0 5 3.57\n 17 \u2502 Volvo 142E 21.4 4 2.78\n 11 rows omitted\n
Lets say you wanted to filter on new variable with a different name and select new columns,
new_condition = :wt;\nnew_cols = [:model, :drat]\n@interpolate((conditions, new_condition), (columns, new_cols));\n@f1(new_condition, new_cols)\n
20\u00d72 DataFrame\n Row \u2502 model drat\n \u2502 String? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Hornet 4 Drive 3.08\n 2 \u2502 Hornet Sportabout 3.15\n 3 \u2502 Valiant 2.76\n \u22ee \u2502 \u22ee \u22ee\n 18 \u2502 Pontiac Firebird 3.08\n 19 \u2502 Ford Pantera L 4.22\n 20 \u2502 Maserati Bora 3.54\n 14 rows omitted\n
You can also interpolate vectors of strings into a @filter(col in (values))
as well by using the following syntax @filter(col in [!!values])
In short, the first argument in @interpolate
must be the name of the macro argument it refers to, and the second argument is what you would like to replace it.
We recognize this adds friction and that it is not ideal, but given the TidierDB macro expressions/string interplay, this is currently the most graceful and functional option available and hopefully a temporary solution to better interpolation that mirrors TidierData.jl.
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/getting_started/","title":"Getting Started","text":"To use TidierDB.jl, you will have to set up a connection. TidierDB.jl gives you access to duckdb via duckdb_open
and duckdb_connect
. However, to use MySql, ClickHouse, MSSQL, Postgres, or SQLite, you will have to load those packages in first.
If you plan to use TidierDB.jl with TidierData.jl or Tidier.jl, it is most convenenient to load the packages as follows:
using TidierData\nimport TidierDB as DB\n
Alternatively, using Tidier
will import TidierDB in the above manner for you, where TidierDB functions and macros will be available as DB.@mutate()
and so on, and the TidierData equivalent would be @mutate()
.
"},{"location":"examples/generated/UserGuide/getting_started/#connecting","title":"Connecting","text":"To connect to a database, you can uset the connect
function as shown below, or establish your own connection through the respecitve libraries.
For example Connecting to MySQL
conn = DB.connect(DB.mysql(); host=\"localhost\", user=\"root\", password=\"password\", db=\"mydb\")\n
versus connecting to DuckDB
conn = DB.connect(DB.duckdb())\n
You can also use establish a connection through an alternate method that you preferred, and use that as your connection as well.
"},{"location":"examples/generated/UserGuide/getting_started/#package-extensions","title":"Package Extensions","text":"The following backends utilize package extensions. To use one of backends listed below, you will need to write using Library
- ClickHouse:
import ClickHouse
- MySQL and MariaDB:
using MySQL
- MSSQL:
using ODBC
- Postgres:
using LibPQ
- SQLite:
using SQLite
- Athena:
using AWS
- Oracle:
using ODBC
- Google BigQuery:
using GoogleCloud
"},{"location":"examples/generated/UserGuide/getting_started/#db_table","title":"db_table
","text":"What does db_table
do?
db_table
starts the underlying SQL query struct, in addition to pulling the table metadata and storing it there. Storing metadata is what enables a lazy interface that also supports tidy selection.
db_table
has two required arguments: connection
and table
table
can be a table name on a database or a path/url to file to read. When passing db_table
a path or url, the table is not copied into memory. - With DuckDB and ClickHouse, if you have a folder of multiple files to read, you can use
*
read in all files matching the pattern. - For example, the below would read all files that end in
.csv
in the given folder.
db_table(db, \"folder/path/*.csv\")\n
db_table
also supports iceberg, delta, and S3 file paths via DuckDB.
"},{"location":"examples/generated/UserGuide/getting_started/#minimizing-compute-costs","title":"Minimizing Compute Costs","text":"If you are working with a backend where compute cost is important, it will be important to minimize using db_table
as this will requery for metadata each time. Compute costs are relevant to backends such as AWS, databricks and Snowflake.
To do this, save the results of db_table
and use them with from_query
. Using from_query
pulls the relevant information (metadata, con, etc) from the mutable SQLquery struct, allowing you to repeatedly query and collect the table without requerying for the metadata each time
table = DB.db_table(con, \"path\")\n@chain DB.from_query(table) begin\n ## data wrangling here\nend\n
Tip: Setting t(table) = from_query(table)
will save some keystrokes. This means after saving the results of db_table
you can start all chains/refer to the data with `t(table)`` \u2013-
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/ibis_comp/","title":"TidierDB.jl vs Ibis","text":""},{"location":"examples/generated/UserGuide/ibis_comp/#comparing-tidierdb-vs-ibis","title":"Comparing TidierDB vs Ibis","text":"TidierDB is a reimplementation of dbplyr from R, so the syntax is remarkably similar. But how does TidierDB compare to Python's Ibis? This page will perform a similar comparison to the Ibis Documentation comparing Ibis and dplyr
"},{"location":"examples/generated/UserGuide/ibis_comp/#set-up","title":"Set up","text":"Ibis
import ibis\nimport ibis.selectors as s # allows for different styles of column selection\nfrom ibis import _ # eliminates need to type table name before each column vs typing cols as strings\nibis.options.interactive = True # automatically collects first 10 rows of table\n
TidierDB
using TidierDB\ndb = connect(duckdb())\n# This next line is optional, but it will let us avoid writing `db_table` or `from_query` for each query\nt(table) = from_query(table)\n
Of note, TidierDB does not yet have an \"interactive mode\" so each example result will be collected.
"},{"location":"examples/generated/UserGuide/ibis_comp/#loading-data","title":"Loading Data","text":"With Ibis, there are specific functions to read in different file types
mtcars = ibis.read_csv(\"https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv\")\n
In TidierDB, there is only db_table
, which determines the file type and generates the syntax appropriate for the backend in use.
mtcars = db_table(db, \"https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv\");\n
"},{"location":"examples/generated/UserGuide/ibis_comp/#previewing-the-data","title":"Previewing the data","text":"TidierDB and Ibis use head
/@head
to preview the first rows of a dataset. Ibis
mtcars.head(6)\n
\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 model \u2503 mpg \u2503 cyl \u2503 disp \u2503 hp \u2503 drat \u2503 wt \u2503 qsec \u2503 vs \u2503 am \u2503 gear \u2503 carb \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 string \u2502 float64 \u2502 int64 \u2502 float64 \u2502 int64 \u2502 float64 \u2502 float64 \u2502 float64 \u2502 int64 \u2502 int64 \u2502 int64 \u2502 int64 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Mazda RX4 \u2502 21.0 \u2502 6 \u2502 160.0 \u2502 110 \u2502 3.90 \u2502 2.620 \u2502 16.46 \u2502 0 \u2502 1 \u2502 4 \u2502 4 \u2502\n\u2502 Mazda RX4 Wag \u2502 21.0 \u2502 6 \u2502 160.0 \u2502 110 \u2502 3.90 \u2502 2.875 \u2502 17.02 \u2502 0 \u2502 1 \u2502 4 \u2502 4 \u2502\n\u2502 Datsun 710 \u2502 22.8 \u2502 4 \u2502 108.0 \u2502 93 \u2502 3.85 \u2502 2.320 \u2502 18.61 \u2502 1 \u2502 1 \u2502 4 \u2502 1 \u2502\n\u2502 Hornet 4 Drive \u2502 21.4 \u2502 6 \u2502 258.0 \u2502 110 \u2502 3.08 \u2502 3.215 \u2502 19.44 \u2502 1 \u2502 0 \u2502 3 \u2502 1 \u2502\n\u2502 Hornet Sportabout \u2502 18.7 \u2502 8 \u2502 360.0 \u2502 175 \u2502 3.15 \u2502 3.440 \u2502 17.02 \u2502 0 \u2502 0 \u2502 3 \u2502 2 \u2502\n\u2502 Valiant \u2502 18.1 \u2502 6 \u2502 225.0 \u2502 105 \u2502 2.76 \u2502 3.460 \u2502 20.22 \u2502 1 \u2502 0 \u2502 3 \u2502 1 \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n
TidierDB
@chain t(mtcars) @head(6) @collect\n
6\u00d712 DataFrame\n Row \u2502 model mpg cyl disp hp drat wt qsec vs am gear carb\n \u2502 String? Float64? Int64? Float64? Int64? Float64? Float64? Float64? Int64? Int64? Int64? Int64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Mazda RX4 21.0 6 160.0 110 3.9 2.62 16.46 0 1 4 4\n 2 \u2502 Mazda RX4 Wag 21.0 6 160.0 110 3.9 2.875 17.02 0 1 4 4\n 3 \u2502 Datsun 710 22.8 4 108.0 93 3.85 2.32 18.61 1 1 4 1\n 4 \u2502 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1\n 5 \u2502 Hornet Sportabout 18.7 8 360.0 175 3.15 3.44 17.02 0 0 3 2\n 6 \u2502 Valiant 18.1 6 225.0 105 2.76 3.46 20.22 1 0 3 1\n
"},{"location":"examples/generated/UserGuide/ibis_comp/#filtering","title":"Filtering","text":"The example below demonstrates how to filter using multiple criteria in both Ibis and TidierData Ibis
mtcars.filter(((_.mpg > 22) & (_.drat > 4) | (_.hp == 113)))\n
\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 model \u2503 mpg \u2503 cyl \u2503 disp \u2503 hp \u2503 drat \u2503 wt \u2503 qsec \u2503 vs \u2503 am \u2503 gear \u2503 carb \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 string \u2502 float64 \u2502 int64 \u2502 float64 \u2502 int64 \u2502 float64 \u2502 float64 \u2502 float64 \u2502 int64 \u2502 int64 \u2502 int64 \u2502 int64 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Lotus Europa \u2502 30.4 \u2502 4 \u2502 95.1 \u2502 113 \u2502 3.77 \u2502 1.513 \u2502 16.90 \u2502 1 \u2502 1 \u2502 5 \u2502 2 \u2502\n\u2502 Fiat 128 \u2502 32.4 \u2502 4 \u2502 78.7 \u2502 66 \u2502 4.08 \u2502 2.200 \u2502 19.47 \u2502 1 \u2502 1 \u2502 4 \u2502 1 \u2502\n\u2502 Honda Civic \u2502 30.4 \u2502 4 \u2502 75.7 \u2502 52 \u2502 4.93 \u2502 1.615 \u2502 18.52 \u2502 1 \u2502 1 \u2502 4 \u2502 2 \u2502\n\u2502 Toyota Corolla \u2502 33.9 \u2502 4 \u2502 71.1 \u2502 65 \u2502 4.22 \u2502 1.835 \u2502 19.90 \u2502 1 \u2502 1 \u2502 4 \u2502 1 \u2502\n\u2502 Fiat X1-9 \u2502 27.3 \u2502 4 \u2502 79.0 \u2502 66 \u2502 4.08 \u2502 1.935 \u2502 18.90 \u2502 1 \u2502 1 \u2502 4 \u2502 1 \u2502\n\u2502 Porsche 914-2 \u2502 26.0 \u2502 4 \u2502 120.3 \u2502 91 \u2502 4.43 \u2502 2.140 \u2502 16.70 \u2502 0 \u2502 1 \u2502 5 \u2502 2 \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n
TidierDB
@chain t(mtcars) begin\n @filter((mpg > 22 && drat > 4) || hp == 113)\n @collect\nend\n
6\u00d712 DataFrame\n Row \u2502 model mpg cyl disp hp drat wt qsec vs am gear carb\n \u2502 String? Float64? Int64? Float64? Int64? Float64? Float64? Float64? Int64? Int64? Int64? Int64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2\n 2 \u2502 Fiat 128 32.4 4 78.7 66 4.08 2.2 19.47 1 1 4 1\n 3 \u2502 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2\n 4 \u2502 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.9 1 1 4 1\n 5 \u2502 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.9 1 1 4 1\n 6 \u2502 Porsche 914-2 26.0 4 120.3 91 4.43 2.14 16.7 0 1 5 2\n
"},{"location":"examples/generated/UserGuide/ibis_comp/#creating-new-columns","title":"Creating new columns","text":"Both TidierDB and Ibis use mutate
/@mutate
to add new columns Ibis
(\n mtcars\n .mutate(kpg = _.mpg * 1.61)\n .select(\"model\", \"kpg\")\n)\n
\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 model \u2503 kpg \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 string \u2502 float64 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Mazda RX4 \u2502 33.810 \u2502\n\u2502 Mazda RX4 Wag \u2502 33.810 \u2502\n\u2502 Datsun 710 \u2502 36.708 \u2502\n\u2502 Hornet 4 Drive \u2502 34.454 \u2502\n\u2502 Hornet Sportabout \u2502 30.107 \u2502\n\u2502 Valiant \u2502 29.141 \u2502\n\u2502 Duster 360 \u2502 23.023 \u2502\n\u2502 Merc 240D \u2502 39.284 \u2502\n\u2502 Merc 230 \u2502 36.708 \u2502\n\u2502 Merc 280 \u2502 30.912 \u2502\n\u2502 \u2026 \u2502 \u2026 \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n
TidierDB
@chain t(mtcars) begin\n @mutate(kpg = mpg * 1.61)\n @select(model, kpg)\n @collect\nend\n
32\u00d72 DataFrame\n Row \u2502 model kpg\n \u2502 String? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Mazda RX4 33.81\n 2 \u2502 Mazda RX4 Wag 33.81\n 3 \u2502 Datsun 710 36.708\n 4 \u2502 Hornet 4 Drive 34.454\n 5 \u2502 Hornet Sportabout 30.107\n 6 \u2502 Valiant 29.141\n \u22ee \u2502 \u22ee \u22ee\n 27 \u2502 Porsche 914-2 41.86\n 28 \u2502 Lotus Europa 48.944\n 29 \u2502 Ford Pantera L 25.438\n 30 \u2502 Ferrari Dino 31.717\n 31 \u2502 Maserati Bora 24.15\n 32 \u2502 Volvo 142E 34.454\n 20 rows omitted\n
"},{"location":"examples/generated/UserGuide/ibis_comp/#sorting-columns","title":"Sorting columns","text":"Ibis uses order_by
similar to SQLs ORDER BY
Ibis
mtcars.order_by(_.mpg)\n
\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 model \u2503 mpg \u2503 cyl \u2503 disp \u2503 hp \u2503 drat \u2503 wt \u2503 qsec \u2503 vs \u2503 am \u2503 gear \u2503 carb \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 string \u2502 float64 \u2502 int64 \u2502 float64 \u2502 int64 \u2502 float64 \u2502 float64 \u2502 float64 \u2502 int64 \u2502 int64 \u2502 int64 \u2502 int64 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Cadillac Fleetwood \u2502 10.4 \u2502 8 \u2502 472.0 \u2502 205 \u2502 2.93 \u2502 5.250 \u2502 17.98 \u2502 0 \u2502 0 \u2502 3 \u2502 4 \u2502\n\u2502 Lincoln Continental \u2502 10.4 \u2502 8 \u2502 460.0 \u2502 215 \u2502 3.00 \u2502 5.424 \u2502 17.82 \u2502 0 \u2502 0 \u2502 3 \u2502 4 \u2502\n\u2502 Camaro Z28 \u2502 13.3 \u2502 8 \u2502 350.0 \u2502 245 \u2502 3.73 \u2502 3.840 \u2502 15.41 \u2502 0 \u2502 0 \u2502 3 \u2502 4 \u2502\n\u2502 Duster 360 \u2502 14.3 \u2502 8 \u2502 360.0 \u2502 245 \u2502 3.21 \u2502 3.570 \u2502 15.84 \u2502 0 \u2502 0 \u2502 3 \u2502 4 \u2502\n\u2502 Chrysler Imperial \u2502 14.7 \u2502 8 \u2502 440.0 \u2502 230 \u2502 3.23 \u2502 5.345 \u2502 17.42 \u2502 0 \u2502 0 \u2502 3 \u2502 4 \u2502\n\u2502 Maserati Bora \u2502 15.0 \u2502 8 \u2502 301.0 \u2502 335 \u2502 3.54 \u2502 3.570 \u2502 14.60 \u2502 0 \u2502 1 \u2502 5 \u2502 8 \u2502\n\u2502 Merc 450SLC \u2502 15.2 \u2502 8 \u2502 275.8 \u2502 180 \u2502 3.07 \u2502 3.780 \u2502 18.00 \u2502 0 \u2502 0 \u2502 3 \u2502 3 \u2502\n\u2502 AMC Javelin \u2502 15.2 \u2502 8 \u2502 304.0 \u2502 150 \u2502 3.15 \u2502 3.435 \u2502 17.30 \u2502 0 \u2502 0 \u2502 3 \u2502 2 \u2502\n\u2502 Dodge Challenger \u2502 15.5 \u2502 8 \u2502 318.0 \u2502 150 \u2502 2.76 \u2502 3.520 \u2502 16.87 \u2502 0 \u2502 0 \u2502 3 \u2502 2 \u2502\n\u2502 Ford Pantera L \u2502 15.8 \u2502 8 \u2502 351.0 \u2502 264 \u2502 4.22 \u2502 3.170 \u2502 14.50 \u2502 0 \u2502 1 \u2502 5 \u2502 4 \u2502\n\u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n
While TidierDB uses @arrange
like TidierData.jl TidierDB
@chain t(mtcars) @arrange(mpg) @collect\n
32\u00d712 DataFrame\n Row \u2502 model mpg cyl disp hp drat wt qsec vs am gear carb\n \u2502 String? Float64? Int64? Float64? Int64? Float64? Float64? Float64? Int64? Int64? Int64? Int64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.25 17.98 0 0 3 4\n 2 \u2502 Lincoln Continental 10.4 8 460.0 215 3.0 5.424 17.82 0 0 3 4\n 3 \u2502 Camaro Z28 13.3 8 350.0 245 3.73 3.84 15.41 0 0 3 4\n 4 \u2502 Duster 360 14.3 8 360.0 245 3.21 3.57 15.84 0 0 3 4\n 5 \u2502 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4\n 6 \u2502 Maserati Bora 15.0 8 301.0 335 3.54 3.57 14.6 0 1 5 8\n \u22ee \u2502 \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee\n 27 \u2502 Porsche 914-2 26.0 4 120.3 91 4.43 2.14 16.7 0 1 5 2\n 28 \u2502 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.9 1 1 4 1\n 29 \u2502 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2\n 30 \u2502 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2\n 31 \u2502 Fiat 128 32.4 4 78.7 66 4.08 2.2 19.47 1 1 4 1\n 32 \u2502 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.9 1 1 4 1\n 20 rows omitted\n
"},{"location":"examples/generated/UserGuide/ibis_comp/#selecting-columns","title":"Selecting columns","text":"In Ibis, columns must be prefixed with the table name, or in this case _
, or they can be given as a string. Finally to using helper functions like startswith
requires importing selectors as above. Ibis
mtcars.select(s.startswith(\"m\"), \"drat\", _.wt)\n
\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 model \u2503 mpg \u2503 drat \u2503 wt \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 string \u2502 float64 \u2502 float64 \u2502 float64 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Mazda RX4 \u2502 21.0 \u2502 3.90 \u2502 2.620 \u2502\n\u2502 Mazda RX4 Wag \u2502 21.0 \u2502 3.90 \u2502 2.875 \u2502\n\u2502 Datsun 710 \u2502 22.8 \u2502 3.85 \u2502 2.320 \u2502\n\u2502 Hornet 4 Drive \u2502 21.4 \u2502 3.08 \u2502 3.215 \u2502\n\u2502 Hornet Sportabout \u2502 18.7 \u2502 3.15 \u2502 3.440 \u2502\n\u2502 Valiant \u2502 18.1 \u2502 2.76 \u2502 3.460 \u2502\n\u2502 Duster 360 \u2502 14.3 \u2502 3.21 \u2502 3.570 \u2502\n\u2502 Merc 240D \u2502 24.4 \u2502 3.69 \u2502 3.190 \u2502\n\u2502 Merc 230 \u2502 22.8 \u2502 3.92 \u2502 3.150 \u2502\n\u2502 Merc 280 \u2502 19.2 \u2502 3.92 \u2502 3.440 \u2502\n\u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502 \u2026 \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n
TidierDB does not require names to be prefixed and, like TidierData, tidy column selection with starts_with
, ends_with
, and contains
is supported at base. TidierDB also supports providing column names as strings, although this would only be needed in the setting of renaming a column with a space in it. TidierDB
@chain t(mtcars) @select(starts_with(\"m\"), \"drat\", wt) @collect\n
32\u00d74 DataFrame\n Row \u2502 model mpg drat wt\n \u2502 String? Float64? Float64? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Mazda RX4 21.0 3.9 2.62\n 2 \u2502 Mazda RX4 Wag 21.0 3.9 2.875\n 3 \u2502 Datsun 710 22.8 3.85 2.32\n 4 \u2502 Hornet 4 Drive 21.4 3.08 3.215\n 5 \u2502 Hornet Sportabout 18.7 3.15 3.44\n 6 \u2502 Valiant 18.1 2.76 3.46\n \u22ee \u2502 \u22ee \u22ee \u22ee \u22ee\n 27 \u2502 Porsche 914-2 26.0 4.43 2.14\n 28 \u2502 Lotus Europa 30.4 3.77 1.513\n 29 \u2502 Ford Pantera L 15.8 4.22 3.17\n 30 \u2502 Ferrari Dino 19.7 3.62 2.77\n 31 \u2502 Maserati Bora 15.0 3.54 3.57\n 32 \u2502 Volvo 142E 21.4 4.11 2.78\n 20 rows omitted\n
"},{"location":"examples/generated/UserGuide/ibis_comp/#multi-step-queries-and-summarizing","title":"Multi step queries and summarizing","text":"Aggregating data is done with aggregate
in Ibis and @summarize
in TidierDB. To group data, Ibis uses by =
within the aggregate
call vs TidierDB adheres to @group_by
convention Ibis
mtcars.aggregate(\n total_hp=_.hp.sum(),\n avg_hp=_.hp.mean(),\n having=_.hp.sum() < 1000,\n by=['cyl']\n)\n
\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 cyl \u2503 total_hp \u2503 avg_hp \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 int64 \u2502 int64 \u2502 float64 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 6 \u2502 856 \u2502 122.285714 \u2502\n\u2502 4 \u2502 909 \u2502 82.636364 \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n
In TidierDB, @filter
will automatically determine whether the criteria belong in a WHERE
or HAVING
SQL clause. TidierDB
@chain t(mtcars) begin\n @group_by(cyl)\n @summarize(total_hp = sum(hp),\n avg_hp = avg(hp))\n @filter(total_hp < 1000)\n @collect\nend\n
2\u00d73 DataFrame\n Row \u2502 cyl total_hp avg_hp\n \u2502 Int64? Int128? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 6 856 122.286\n 2 \u2502 4 909 82.6364\n
"},{"location":"examples/generated/UserGuide/ibis_comp/#renaming-columns","title":"Renaming columns","text":"Both tools use rename
/@rename to rename columns Ibis
mtcars.rename(make_model = \"model\").select(_.make_model)\n
\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 make_model \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 string \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Mazda RX4 \u2502\n\u2502 Mazda RX4 Wag \u2502\n\u2502 Datsun 710 \u2502\n\u2502 Hornet 4 Drive \u2502\n\u2502 Hornet Sportabout \u2502\n\u2502 Valiant \u2502\n\u2502 Duster 360 \u2502\n\u2502 Merc 240D \u2502\n\u2502 Merc 230 \u2502\n\u2502 Merc 280 \u2502\n\u2502 \u2026 \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n
TidierDB
@chain t(mtcars) @rename(model_make = model) @select(model_make) @collect\n
32\u00d71 DataFrame\n Row \u2502 model_make\n \u2502 String?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Mazda RX4\n 2 \u2502 Mazda RX4 Wag\n 3 \u2502 Datsun 710\n 4 \u2502 Hornet 4 Drive\n 5 \u2502 Hornet Sportabout\n 6 \u2502 Valiant\n \u22ee \u2502 \u22ee\n 27 \u2502 Porsche 914-2\n 28 \u2502 Lotus Europa\n 29 \u2502 Ford Pantera L\n 30 \u2502 Ferrari Dino\n 31 \u2502 Maserati Bora\n 32 \u2502 Volvo 142E\n 20 rows omitted\n
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/key_differences/","title":"Key Differences from TidierData.jl","text":"There are a few important syntax and behavior differences between TidierDB.jl and TidierData.jl outlined below.
"},{"location":"examples/generated/UserGuide/key_differences/#creating-a-database","title":"Creating a database","text":"For these examples we will use DuckDB, the default backend, although SQLite, Postgres, MySQL, MariaDB, MSSQL, and ClickHouse are possible. If you have an existing DuckDB connection, then this step is not required. For these examples, we will create a data frame and copy it to an in-memory DuckDB database.
using DataFrames, TidierDB\n\ndf = DataFrame(id = [string('A' + i \u00f7 26, 'A' + i % 26) for i in 0:9],\n groups = [i % 2 == 0 ? \"aa\" : \"bb\" for i in 1:10],\n value = repeat(1:5, 2),\n percent = 0.1:0.1:1.0);\n\ndb = connect(duckdb());\n\ncopy_to(db, df, \"df_mem\"); # copying over the data frame to an in-memory database\n
"},{"location":"examples/generated/UserGuide/key_differences/#row-ordering","title":"Row ordering","text":"DuckDB benefits from aggressive parallelization of pipelines. This means that if you have multiple threads enabled in Julia, which you can check or set using Threads.nthreads()
, DuckDB will use multiple threads. However, because many operations are multi-threaded, the resulting row order is inconsistent. If row order needs to be deterministic for your use case, make sure to apply an @arrange(column_name_1, column_name_2, etc...)
prior to collecting the results.
"},{"location":"examples/generated/UserGuide/key_differences/#starting-a-chain","title":"Starting a chain","text":"When using TidierDB, db_table(connection, :table_name)
is used to start a chain.
"},{"location":"examples/generated/UserGuide/key_differences/#grouped-mutation","title":"Grouped mutation","text":"In TidierDB, when performing @group_by
then @mutate
, the table will be ungrouped after applying all of the mutations in the clause to the grouped data. To perform subsequent grouped operations, the user would have to regroup the data. This is demonstrated below.
@chain db_table(db, :df_mem) begin\n @group_by(groups)\n @summarize(mean_percent = mean(percent))\n @collect\n end\n
2\u00d72 DataFrame Rowgroupsmean_percentString?Float64?1bb0.52aa0.6 Regrouping following @mutate
@chain db_table(db, :df_mem) begin\n @group_by(groups)\n @mutate(max = maximum(percent), min = minimum(percent))\n @group_by(groups)\n @summarise(mean_percent = mean(percent))\n @collect\nend\n
2\u00d72 DataFrame Rowgroupsmean_percentString?Float64?1bb0.52aa0.6 "},{"location":"examples/generated/UserGuide/key_differences/#joining","title":"Joining","text":"There is one key difference for joining:
The column on both the new and old table must be specified. They do not need to be the same, and given SQL behavior where both columns are kept when joining two tables, it is preferable if they have different names. This avoids \"ambiguous reference\" errors that would otherwise come up and complicate the use of tidy selection for columns. Athena has an additional slight difference given the need for parameters, which is covered in the Athena documentation page.
df2 = DataFrame(id2 = [\"AA\", \"AC\", \"AE\", \"AG\", \"AI\", \"AK\", \"AM\"],\n category = [\"X\", \"Y\", \"X\", \"Y\", \"X\", \"Y\", \"X\"],\n score = [88, 92, 77, 83, 95, 68, 74]);\n\ncopy_to(db, df2, \"df_join\");\n\n@chain db_table(db, :df_mem) begin\n @left_join(df_join, id2, id)\n @collect\nend\n
10\u00d77 DataFrame Rowidgroupsvaluepercentid2categoryscoreString?String?Int64?Float64?String?String?Int64?1AAbb10.1AAX882ACbb30.3ACY923AEbb50.5AEX774AGbb20.7AGY835AIbb40.9AIX956ABaa20.2missingmissingmissing7ADaa40.4missingmissingmissing8AFaa10.6missingmissingmissing9AHaa30.8missingmissingmissing10AJaa51.0missingmissingmissing "},{"location":"examples/generated/UserGuide/key_differences/#differences-in-case_when","title":"Differences in case_when()
","text":"In TidierDB, after the clause is completed, the result for the new column should is separated by a comma ,
in contrast to TidierData.jl, where the result for the new column is separated by a =>
.
@chain db_table(db, :df_mem) begin\n @mutate(new_col = case_when(percent > .5, \"Pass\", # in TidierData, percent > .5 => \"Pass\",\n percent <= .5, \"Try Again\", # percent <= .5 => \"Try Again\"\n true, \"middle\"))\n @collect\n end\n
10\u00d75 DataFrame Rowidgroupsvaluepercentnew_colString?String?Int64?Float64?String?1AAbb10.1Try Again2ABaa20.2Try Again3ACbb30.3Try Again4ADaa40.4Try Again5AEbb50.5Try Again6AFaa10.6Pass7AGbb20.7Pass8AHaa30.8Pass9AIbb40.9Pass10AJaa51.0Pass "},{"location":"examples/generated/UserGuide/key_differences/#interpolation","title":"Interpolation","text":"To use !! Interpolation, instead of being able to define the alternate names/value in the global context, the user has to use @interpolate
. This will hopefully be fixed in future versions. Otherwise, the behavior is generally the same, although this creates friction around calling functions.
Also, when using interpolation with exponenents, the interpolated value must go inside of parenthesis.
@interpolate((test, :percent)); # this still supports strings, vectors of names, and values\n\n@chain db_table(db, :df_mem) begin\n @mutate(new_col = case_when((!!test)^2 > .5, \"Pass\",\n (!!test)^2 < .5, \"Try Again\",\n \"middle\"))\n @collect\nend\n
10\u00d75 DataFrame\n Row \u2502 id groups value percent new_col\n \u2502 String? String? Int64? Float64? String?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 AA bb 1 0.1 Try Again\n 2 \u2502 AB aa 2 0.2 Try Again\n 3 \u2502 AC bb 3 0.3 Try Again\n \u22ee \u2502 \u22ee \u22ee \u22ee \u22ee \u22ee\n 8 \u2502 AH aa 3 0.8 Pass\n 9 \u2502 AI bb 4 0.9 Pass\n 10 \u2502 AJ aa 5 1.0 Pass\n 4 rows omitted\n
"},{"location":"examples/generated/UserGuide/key_differences/#slicing-ties","title":"Slicing ties","text":"slice_min()
and @slice_max()
will always return ties due to SQL behavior.
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/outofmemex/","title":"Working With Larger than RAM Datasets","text":"While using the DuckDB backend, TidierDB's lazy intferace enables querying datasets larger than your available RAM.
To illustrate this, we will recreate the Hugging Face x Polars example. The final table results are shown below and in this Hugging Face x DuckDB example
First we will load TidierDB, set up a local database and then set the URLs for the 2 training datasets from huggingface.co
using TidierDB\ndb = connect(duckdb())\n\nurls = [\"https://huggingface.co/datasets/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/blog_authorship_corpus/train/0000.parquet\",\n \"https://huggingface.co/datasets/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/blog_authorship_corpus/train/0001.parquet\"];\n
Here, we pass the vector of URLs to db_table
, which will not copy them into memory. Since these datasets are so large, we will also set stream = true
in @collect
to stream the results. If we wanted to read all the files in the folder we could have replace the 0000
with *
(wildcard) db_table(db, \"Path/to/folder/*.parquet\")
Of note, reading these files from URLs is not as rapid as reading them from local files.
@chain db_table(db, urls) begin\n @group_by(horoscope)\n @summarise(count = n(), avg_blog_length = mean(length(text)))\n @arrange(desc(count))\n @aside @show_query _\n @collect(stream = true)\nend\n
Placing @aside @show_query _
before @collect
above lets us see the SQL query and collect it to a local DataFrame at the same time.
SELECT horoscope, COUNT(*) AS count, AVG(length(text)) AS avg_blog_length\n FROM read_parquet(['https://huggingface.co/datasets/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/blog_authorship_corpus/train/0000.parquet', 'https://huggingface.co/datasets/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/blog_authorship_corpus/train/0001.parquet'])\n GROUP BY horoscope\n ORDER BY avg_blog_length DESC\n12\u00d73 DataFrame\n Row \u2502 horoscope count avg_blog_length\n \u2502 String? Int64? Float64?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 Aquarius 49568 1125.83\n 2 \u2502 Cancer 63512 1097.96\n 3 \u2502 Libra 60304 1060.61\n 4 \u2502 Capricorn 49402 1059.56\n 5 \u2502 Sagittarius 50431 1057.46\n 6 \u2502 Leo 58010 1049.6\n 7 \u2502 Taurus 61571 1022.69\n 8 \u2502 Gemini 52925 1020.26\n 9 \u2502 Scorpio 56495 1014.03\n 10 \u2502 Pisces 53812 1011.75\n 11 \u2502 Virgo 64629 996.684\n 12 \u2502 Aries 69134 918.081\n
To learn more about memory efficient queries on larger than RAM files, this blog from DuckDB will help maximize your local db
This page was generated using Literate.jl.
"},{"location":"examples/generated/UserGuide/s3viaduckdb/","title":"S3 + DuckDB + TidierDB","text":"TidierDB allows you leverage DuckDB's seamless database integration.
Using DuckDB, you can connect to an AWS or GoogleCloud Database to query directly without making any local copies.
You can also use DBInterface.execute
to set up any DuckDB database connection you need and then use that db to query with TidierDB
using TidierDB\n\n#Connect to Google Cloud via DuckDB\n#google_db = connect(duckdb(), :gbq, access_key=\"string\", secret_key=\"string\")\n\n#Connect to AWS via DuckDB\naws_db = connect(duckdb(), :aws, aws_access_key_id= \"string\",\n aws_secret_access_key= \"string\",\n aws_region=\"us-east-1\")\ns3_csv_path = \"s3://path/to_data.csv\"\n\n@chain db_table(aws_db, s3_csv_path) begin\n @filter(!starts_with(column1, \"M\"))\n @group_by(cyl)\n @summarize(mpg = mean(mpg))\n @mutate(mpg_squared = mpg^2,\n mpg_rounded = round(mpg),\n mpg_efficiency = case_when(\n mpg >= cyl^2 , \"efficient\",\n mpg < 15.2 , \"inefficient\",\n \"moderate\"))\n @filter(mpg_efficiency in (\"moderate\", \"efficient\"))\n @arrange(desc(mpg_rounded))\n @collect\nend\n
2\u00d75 DataFrame\n Row \u2502 cyl mpg mpg_squared mpg_rounded mpg_efficiency\n \u2502 Int64? Float64? Float64? Float64? String?\n\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n 1 \u2502 4 27.3444 747.719 27.0 efficient\n 2 \u2502 6 19.7333 389.404 20.0 moderate\n
This page was generated using Literate.jl.
"}]}
\ No newline at end of file