-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c93c0e1
commit 7268093
Showing
1 changed file
with
133 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
from typing import Dict | ||
from GeneralRelativity.DimensionDefinitions import FOR1, FOR2 | ||
from GeneralRelativity.TensorAlgebra import compute_trace | ||
import torch | ||
|
||
|
||
def compute_ricci_Z( | ||
vars: Dict[str, torch.Tensor], | ||
d1: Dict[str, torch.Tensor], | ||
d2: Dict[str, torch.Tensor], | ||
h_UU: torch.Tensor, | ||
chris: Dict[str, torch.Tensor], | ||
Z_over_chi: torch.Tensor, | ||
) -> Dict[str, torch.Tensor]: | ||
""" | ||
Compute the Ricci tensor Z using the provided variables, derivatives, and Christoffel symbols. | ||
Args: | ||
vars (dict): Dictionary of tensor variables. | ||
d1 (dict): Dictionary of first derivatives of tensor variables. | ||
d2 (dict): Dictionary of second derivatives of tensor variables. | ||
h_UU (torch.Tensor): Inverse metric tensor. | ||
chris (dict): Dictionary containing ULL and LLL Christoffel symbols. | ||
Z_over_chi (torch.Tensor): Tensor Z divided by chi. | ||
Returns: | ||
dict: Dictionary containing the components of the Ricci tensor Z. | ||
""" | ||
out = {"LL": torch.zeros_like(vars["h"]), "scalar": 0} | ||
|
||
GR_SPACEDIM = 3 | ||
boxtildechi = 0 | ||
|
||
covdtilde2chi = torch.zeros_like(vars["h"]) | ||
# FOR2(k, l) | ||
# { | ||
# covdtilde2chi[k][l] = d2.chi[k][l]; | ||
# FOR1(m) { covdtilde2chi[k][l] -= chris.ULL[m][k][l] * d1.chi[m]; } | ||
# } | ||
for k, l in FOR2(): | ||
covdtilde2chi[..., k, l] = d2["chi"][..., k, l] | ||
for m in FOR1(): | ||
covdtilde2chi[..., k, l] -= chris["ULL"][..., m, k, l] * d1["chi"][..., m] | ||
# FOR2(k, l) { boxtildechi += h_UU[k][l] * covdtilde2chi[k][l]; } | ||
for k, l in FOR2(): | ||
boxtildechi += h_UU[..., k, l] * covdtilde2chi[..., k, l] | ||
# data_t dchi_dot_dchi = 0; | ||
# { | ||
# FOR2(m, n) { dchi_dot_dchi += h_UU[m][n] * d1.chi[m] * d1.chi[n]; } | ||
# } | ||
dchi_dot_dchi = torch.zeros_like(vars["chi"][...]) | ||
for m, n in FOR2(): | ||
dchi_dot_dchi += h_UU[..., m, n] * d1["chi"][..., m] * d1["chi"][..., n] | ||
|
||
# FOR2(i, j) | ||
# { | ||
for i, j in FOR2(): | ||
# data_t ricci_tilde = 0; | ||
# FOR1(k) | ||
# { | ||
ricci_tilde = 0 | ||
for k in FOR1(): | ||
# ricci_tilde += 0.5 * (vars.h[k][i] * d1.Gamma[k][j] + | ||
# vars.h[k][j] * d1.Gamma[k][i]); | ||
# ricci_tilde += 0.5 * (vars.Gamma[k] - 2 * Z_over_chi[k]) * | ||
# (chris.LLL[i][j][k] + chris.LLL[j][i][k]); | ||
ricci_tilde += 0.5 * ( | ||
vars["h"][..., k, i] * d1["Gamma"][..., k, j] | ||
+ vars["h"][..., k, j] * d1["Gamma"][..., k, i] | ||
) | ||
ricci_tilde += ( | ||
0.5 | ||
* (vars["Gamma"][..., k] - 2 * Z_over_chi[..., k]) | ||
* (chris["LLL"][..., i, j, k] + chris["LLL"][..., j, i, k]) | ||
) | ||
# FOR1(l) | ||
# { | ||
for l in FOR1(): | ||
# ricci_tilde -= 0.5 * h_UU[k][l] * d2.h[i][j][k][l]; | ||
ricci_tilde -= 0.5 * h_UU[..., k, l] * d2["h"][..., i, j, k, l] | ||
# FOR1(m) | ||
# { | ||
for m in FOR1(): | ||
# ricci_tilde += | ||
# h_UU[l][m] * | ||
# (chris.ULL[k][l][i] * chris.LLL[j][k][m] + | ||
# chris.ULL[k][l][j] * chris.LLL[i][k][m] + | ||
# chris.ULL[k][i][m] * chris.LLL[k][l][j]); | ||
ricci_tilde += h_UU[..., l, m] * ( | ||
chris["ULL"][..., k, l, i] * chris["LLL"][..., j, k, m] | ||
+ chris["ULL"][..., k, l, j] * chris["LLL"][..., i, k, m] | ||
+ chris["ULL"][..., k, i, m] * chris["LLL"][..., k, l, j] | ||
) | ||
|
||
# data_t ricci_chi = | ||
# 0.5 * ((GR_SPACEDIM - 2) * covdtilde2chi[i][j] + | ||
# vars.h[i][j] * boxtildechi - | ||
# ((GR_SPACEDIM - 2) * d1.chi[i] * d1.chi[j] + | ||
# GR_SPACEDIM * vars.h[i][j] * dchi_dot_dchi) / | ||
# (2 * vars.chi)); | ||
ricci_chi = 0.5 * ( | ||
(GR_SPACEDIM - 2) * covdtilde2chi[..., i, j] | ||
+ vars["h"][..., i, j] * boxtildechi | ||
- ( | ||
(GR_SPACEDIM - 2) * d1["chi"][..., i] * d1["chi"][..., j] | ||
+ GR_SPACEDIM * vars["h"][..., i, j] * dchi_dot_dchi | ||
) | ||
/ (2 * vars["chi"]) | ||
) | ||
# data_t z_terms = 0; | ||
# FOR1(k) | ||
# { | ||
z_terms = 0 | ||
for k in FOR1(): | ||
# z_terms += | ||
# Z_over_chi[k] * | ||
# (vars.h[i][k] * d1.chi[j] + vars.h[j][k] * d1.chi[i] - | ||
# vars.h[i][j] * d1.chi[k] + d1.h[i][j][k] * vars.chi); | ||
z_terms += Z_over_chi[..., k] * ( | ||
vars["h"][..., i, k] * d1["chi"][..., j] | ||
+ vars["h"][..., j, k] * d1["chi"][..., i] | ||
- vars["h"][..., i, j] * d1["chi"][..., k] | ||
+ d1["h"][..., i, j, k] * vars["chi"] | ||
) | ||
# out.LL[i][j] = | ||
# (ricci_chi + vars.chi * ricci_tilde + z_terms) / vars.chi; | ||
out["LL"][..., i, j] = (ricci_chi + vars["chi"] * ricci_tilde + z_terms) / vars[ | ||
"chi" | ||
] | ||
# out.scalar = vars.chi * TensorAlgebra::compute_trace(out.LL, h_UU); | ||
out["scalar"] = vars["chi"] * compute_trace(out["LL"], h_UU) | ||
|
||
return out |