-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate_models.py
35 lines (30 loc) · 1.11 KB
/
evaluate_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import sys
import os
import argparse
import pandas as pd
import torch
from SuperResolution.models import calculate_test_loss, load_model, check_performance
from SuperResolution.utils import load_config, copy_config_file
def clean_tensor_values(value):
if isinstance(value, torch.Tensor):
return value.item()
return value
metrics = []
for name in os.listdir("models"):
net, config = load_model(os.path.join("models", name))
metric = calculate_test_loss(net, config, name)
for i in [2, 3, 4, 5, 6]:
# Check performance
L2Hmodelerror, L2Hinterp = check_performance(
net=net,
config=config,
datafolder=f"/home/thelfer1/scr4_tedwar42/thelfer1/high_end_data_{i}/outputXdata_level{config['res_level']}_step00[04]*.dat",
)
factor = L2Hinterp / L2Hmodelerror
metric[f"factor{i}"] = factor
metric[f"L2Hinterp{i}"] = L2Hinterp
metric[f"L2Hmodelerror{i}"] = L2Hmodelerror
metrics.append(metric)
df = pd.DataFrame(metrics)
df = df.applymap(clean_tensor_values)
df.to_csv("metrics_results.csv", index=False)