-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcam.py
60 lines (52 loc) · 1.95 KB
/
cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import threading
import binascii
from time import sleep
from utils import base64_to_cv2_image
import cv2
from face_recognition import OnWebFaceRecognition, draw_annotation
import numpy as np
import base64
class Annotator:
def __init__(self, mjson=None, mdt=None):
self.mjson = mjson
self.mdt = mdt
def apply_filter(self, frame):
if self.mjson != None and self.mdt != None:
fr = OnWebFaceRecognition(json_data=self.mjson, face_detection_threshold=self.mdt)
smaller_frame = cv2.cvtColor(cv2.resize(frame, (0, 0), fx=0.5, fy=0.5), cv2.COLOR_BGR2RGB)
matches = fr.recognize_faces(
image=smaller_frame, threshold=0.6, bboxes=None
)
if matches == None:
return frame
for (face_bbox, match, min_dist) in matches:
name = match["name"] if match is not None else "Unknown"
draw_annotation(frame, name, int(1 / 0.5) * np.array(face_bbox))
_, buffer = cv2.imencode(".jpg", frame)
return base64.b64encode(buffer)
return base64.b64encode(frame)
class Camera(object):
def __init__(self, f=Annotator()):
self.to_process = []
self.to_output = []
self.filter = f
thread = threading.Thread(target=self.keep_processing, args=())
thread.daemon = True
thread.start()
def process_one(self):
if not self.to_process:
return
input_str = self.to_process.pop(0)
input_img = base64_to_cv2_image(input_str)
output_str = self.filter.apply_filter(input_img)
self.to_output.append(binascii.a2b_base64(output_str))
def keep_processing(self):
while True:
self.process_one()
sleep(0.01)
def enqueue_input(self, input):
self.to_process.append(input)
def get_frame(self):
while not self.to_output:
sleep(0.05)
return self.to_output.pop(0)