-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
233 lines (177 loc) · 9.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import torch, os, gc
from tqdm import tqdm
from efficientnet_pytorch import EfficientNet
import torch.nn as nn
import numpy as np
import argparse
import time
from torch.utils.tensorboard import SummaryWriter # Used to see training evolution
from src.load_data import AudiosetDataset
from src.generate_data import generate_lists
from src.EfficientNet import EffNetAttention
from src.diffres import DiffRes
PATH_DATASET = "./datasets/speechcommands"
PATH_DATA = "./misc/diffres_data_speechcommands"
PATH_OUTPUT = "./working/"
def prepare_start():
generate_lists(PATH_DATASET, PATH_OUTPUT, PATH_DATA)
data_train = PATH_OUTPUT + 'datafiles/speechcommand_train_data.json'
data_val = PATH_OUTPUT + 'datafiles/speechcommand_valid_data.json'
#data_eval = PATH_OUTPUT + 'datafiles/speechcommand_eval_data.json'
return data_train, data_val
def prepare_parameters(algo, args = {}):
params = {}
params["num_mel_bins"] = 128
params["target_length"] = 98
params["audio_conf"] = {'num_mel_bins': params["num_mel_bins"], 'target_length': params["target_length"]}
params["label_csv"] = PATH_DATA + "/speechcommands_class_labels_indices.csv"
params["hop_ms"] = 10 # how much each window moves forward relative to the previous one
params["batch_size"] = args.batch_size if args.batch_size else 256 # Size of each batch
params["num_workers"] = 2 # Max recommended is 2
params["n_class"] = 35 # 35 classes in speechcommands
params["eff_b"] = 2 # To select efficientnet network
params["pretrained"] = True # Use pretrained model or not
params["att_head"] = 4 # Number of attentions heads
params["preserve_ratio"] = args.ratio if args.ratio else 0.5 # will preserve x% of original audio
params["alpha"] = 1.0
params["learn_pos_emb"] = False
# params["algo"] = "DiffRes" # Drop-in algorithm : DiffRes / None
params["algo"] = algo
params["epoch"] = 0 # Current epoch
params["n_epochs"] = 20 # Number of epoch to stop training
params["global_step"] = 0 # 1 step = 1 batch
params["lr"] = 2.5e-3 # learning rate
params["lrscheduler_start"] = 3 # When to start decreasing the lr
params["lrscheduler_decay"] = 0.7 # coefficient of reduction
params["time_id"] = str(time.time())
params["exp_dir"] = PATH_OUTPUT + "save_model_" + str(params["preserve_ratio"]) + "_" + params["time_id"] + "/"
#print(params)
#exit(0)
return params
def prepare_data(data, label_csv, audio_conf, hop_ms, batch_size, num_workers, train=True, mfcc=False):
if not train:
bs = batch_size // 2
else:
bs = batch_size
dataset = AudiosetDataset(data,
label_csv=label_csv,
audio_conf=audio_conf,
hop_ms=hop_ms,
mfcc=mfcc)
loader = torch.utils.data.DataLoader(dataset,
batch_size=bs,
shuffle=True,
num_workers=num_workers,
#sampler=None,
pin_memory=False,
drop_last=True)
return loader
def get_model(n_class, eff_b, pretrained, att_head, target_length, algo, preserve_ratio, alpha, learn_pos_emb, num_mel_bins, device, ratio_visualize):
if algo is None:
a = None
else:
a = eval(algo)
model = EffNetAttention(label_dim=n_class,
b=eff_b,
pretrain=pretrained,
head_num=att_head,
input_seq_length=target_length,
sampler=a,
preserve_ratio=preserve_ratio,
alpha=alpha,
learn_pos_emb=learn_pos_emb,
n_mel_bins=num_mel_bins,
ratio_visualize=ratio_visualize,
device=device).to(device)
return model
def run(algo, mfcc, args = {}):
data_train, data_eval = prepare_start()
params = prepare_parameters(algo, args)
ratio_save = 128/params["batch_size"]
train_loader = prepare_data(data_train, params["label_csv"], params["audio_conf"], params["hop_ms"], params["batch_size"], params["num_workers"], mfcc=mfcc)
val_loader = prepare_data(data_eval, params["label_csv"], params["audio_conf"], params["hop_ms"], params["batch_size"], params["num_workers"], train=False, mfcc=mfcc)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.set_grad_enabled(True)
print(device)
audio_model = get_model(params["n_class"], params["eff_b"], params["pretrained"], params["att_head"], params["target_length"], params["algo"], params["preserve_ratio"], params["alpha"], params["learn_pos_emb"], params["num_mel_bins"], device, ratio_save)
epoch = params["epoch"]
global_step = params["global_step"]
if not os.path.exists(os.path.dirname(params["exp_dir"])):
os.mkdir(params["exp_dir"])
if(os.path.exists(os.path.join(params["exp_dir"], "audio_model.pth"))):
model_checkpoint = torch.load(os.path.join(params["exp_dir"], "audio_model.pth"), map_location="cpu")
audio_model.load_state_dict(model_checkpoint["state_dict"])
epoch = model_checkpoint["epoch"]
global_step = model_checkpoint["global_step"]
audio_model.to(device)
trainables = [p for p in audio_model.parameters() if p.requires_grad]
optimizer = torch.optim.Adam(trainables, params["lr"], weight_decay=5e-7, betas=(0.95, 0.999))
if(os.path.exists(os.path.join(params["exp_dir"], "optim_state.pth"))):
opt_checkpoint = torch.load(os.path.join(params["exp_dir"], "optim_state.pth"), map_location="cpu")
optimizer.load_state_dict(opt_checkpoint["state_dict"])
epoch = model_checkpoint["epoch"]
global_step = model_checkpoint["global_step"]
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, list(range(params["lrscheduler_start"], 1000, 1)), gamma=params["lrscheduler_decay"], last_epoch=epoch-1)
loss_fn = nn.CrossEntropyLoss()
writer = SummaryWriter("runs/run_" + str(params["preserve_ratio"]) + "_" + params["time_id"] + "/")
audio_model.train()
while epoch < params["n_epochs"] + 1:
print("Epoch: ", epoch)
audio_model.train()
for _, (audio_input, labels) in enumerate(tqdm(train_loader)):
audio_input = audio_input.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
audio_output, score_pred = audio_model(audio_input)
if isinstance(loss_fn, torch.nn.CrossEntropyLoss):
loss = loss_fn(audio_output, torch.argmax(labels.long(), axis=1))
else:
epsilon = 1e-7
audio_output = torch.clamp(audio_output, epsilon, 1. - epsilon)
loss = loss_fn(audio_output, labels)
loss = torch.mean(loss)
optimizer.zero_grad()
loss.backward()
optimizer.step()
del audio_input, audio_output, score_pred
# Eval the model every 100 batches
if global_step % (ratio_save*100) == 0:
loss_test = []
audio_model.eval() # Now evaluate the model
true_pred, false_pred = 0, 0
with torch.no_grad():
# Get the data from the val_loader
for _, (audio_input, labels) in enumerate(tqdm(val_loader)):
audio_input = audio_input.to(device)
audio_output,_ = audio_model(audio_input)
predictions_np = audio_output.to('cpu').detach().numpy()
labels_np = labels.to('cpu').detach().numpy()
current_true = np.sum([1 for i in range(len(predictions_np)) if np.argmax(predictions_np[i]) == np.argmax(labels_np[i])])
true_pred += current_true
false_pred += len(predictions_np) - current_true
epsilon = 1e-7
audio_output = torch.clamp(audio_output, epsilon, 1. - epsilon)
ll = loss_fn(audio_output.to('cpu'), labels.to('cpu'))
ll = torch.mean(ll)
loss_test.append(ll.item())
accuracy_test = true_pred / (true_pred + false_pred)
# Writing to tensorboard
writer.add_scalar('Loss/train', loss.item(), global_step/(ratio_save*100))
writer.add_scalar('Loss/test', np.mean(loss_test), global_step/(ratio_save*100))
writer.add_scalar('Accuracy/test', accuracy_test, global_step/(ratio_save*100))
del loss_test, accuracy_test
gc.collect()
audio_model.train()
global_step += 1
scheduler.step()
epoch += 1
torch.save(audio_model.state_dict(), params["exp_dir"] + "model.pt")
torch.save({"state_dict": audio_model.state_dict(), "epoch": epoch, "global_step": global_step}, "%saudio_model.pth" % (params["exp_dir"]))
torch.save({"state_dict": optimizer.state_dict(), "epoch": epoch, "global_step": global_step}, "%soptim_state.pth" % (params["exp_dir"]))
return 0
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--ratio", help="Specified preserve ratio", type=float)
parser.add_argument("--batch-size", help="Specified batch size", type=int)
args = parser.parse_args()
#run(None, False)
run("DiffRes", False, args)