Đồ án kết thúc môn học môn Trí tuệ nhân tạo, chủ đề là áp dụng thuật toán di truyền giải bài toán người du lịch (Travelling salesman problem)
- Bước 1: Tải git và tạo tài khoản
- Bước 2: Copy link mã nguồn
https://github.com/ThienNguyen3001/Travelling-Salesman-Genetic-AI-Final.git
- Bước 3: Mở git bash và clone về máy
- Bước 4: Tải thư viện Numpy, Tkinter và Matplotlib về máy
pip install numpy
pip install matplotlib
pip install tk
- Bước 5:
- Trong thư mục
src
chứa code thuật toán. - Trong thư mục có các file
Experiment
có đuôi.ipynb
là các file thí nghiệm của thành viên trong nhóm. - File
Demo.py
là file chạy giao diện, mở file lên và chạy chương trình.
- Trong thư mục
Tên | Github |
---|---|
Nguyễn Ngọc Thiện | Thiện Nguyễn |
Nguyễn Minh Nhựt | Nhựt Nguyễn |
Nguyễn Trọng Hưởng | Arthur Nguyen |
Trần Viết Gia Huy | Tommyhuy1705 |
Chúng em xin cảm ơn TS. Đặng Ngọc Hoàng Thành đã giúp đỡ chúng em về kiến thức, dìu dắt chúng em để hoàn thành phần dự án này. Và cũng xin cảm ơn các thành viên nhóm đã đóng góp tích cực vào dự án để được hoàn thành trọn vẹn.
- Gent, I. P., & Walsh, T. (1996). The TSP phase transition. Artificial Intelligence, 88(1-2), 349–358. https://doi.org/10.1016/s0004-3702(96)00030-6
- Jünger, M., Reinelt, G., & Rinaldi, G. (1995, January 1). Chapter 4 The traveling salesman problem. ScienceDirect; Elsevier. https://www.sciencedirect.com/science/article/abs/pii/S0927050705801215
- Goyal, S. (2010). A Survey on Travelling Salesman Problem. https://micsymposium.org/mics_2010_proceedings/mics2010_submission_51.pdf
- Larrañaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I., & Dizdarevic, S. (1999). Genetic Algorithms for the Travelling Salesman Problem: A Review of Representations and Operators. Artificial Intelligence Review, 13(2), 129–170. https://doi.org/10.1023/a:1006529012972
- Dorigo, M., & Gambardella, L. M. (1997). Ant colonies for the travelling salesman problem. Biosystems, 43(2), 73–81. https://doi.org/10.1016/s0303-2647(97)01708-5
- Chatterjee, S., Carrera, C., & Lynch, L. A. (1996). Genetic algorithms and traveling salesman problems. European Journal of Operational Research, 93(3), 490–510. https://doi.org/10.1016/0377-2217(95)00077-1
- TSP-Data for the Traveling Salesperson Problem. (2019). Fsu.edu. https://people.sc.fsu.edu/~jburkardt/datasets/tsp/tsp.html
- Gotshall, S., & Rylander, B. (2002). Optimal Population Size and the Genetic Algorithm. Www.semanticscholar.org. https://www.semanticscholar.org/paper/Optimal-Population-Size-and-the-Genetic-Algorithm-Gotshall-Rylander/6eb8128b679348b5bef2729c56dd31f0f173a60b
- Padberg, M., & Rinaldi, G. (1987). Optimization of a 532-city symmetric traveling salesman problem by branch and cut. Operations Research Letters, 6(1), 1–7. https://doi.org/10.1016/0167-6377(87)90002-2
- Lin, S., & Kernighan, B. W. (1973). An Effective Heuristic Algorithm for the Traveling-Salesman Problem. Operations Research, 21(2), 498–516. https://doi.org/10.1287/opre.21.2.498
- Martin, O., Otto, S., & Felten, E. (1991). Large-Step Markov Chains for the Traveling Salesman Problem (pp. 299–326). https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2ebfc1496d19d10bc8f9cfcf7a540ce93f7796f2
- Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. Journal of Statistical Physics, 34(5-6), 975–986. https://doi.org/10.1007/bf01009452
- Holland, J. (1975). Adaptation in Natural and Artificial Systems. In ADAPTATION iN NATURAL AND ARTIFICIAL SYSTEMS. https://books.google.com.vn/books?hl=vi&lr=&id=5EgGaBkwvWcC&oi=fnd&pg=PR7&dq=+Adaptation+in+Natural+and+Artificial+Systems+Holland+1975+University+of+Michigan+Press&ots=mKik04Gotm&sig=jqDlXMrrPG_X38yFO6vPgGl04nA&redir_esc=y#v=onepage&q=Adaptation%20in%20Natural%20and%20Artificial%20Systems%20Holland%201975%20University%20of%20Michigan%20Press&f=false
- Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addion wesley, 1989(102), 36.
- Ahn, C. W., & Ramakrishna, R. S. (2003). Elitism-based compact genetic algorithms. IEEE Transactions on Evolutionary Computation, 7(4), 367–385. https://doi.org/10.1109/tevc.2003.814633
- L. Miller, B., & E. Goldberg, D. (1995). Genetic Algorithms , Tournament Selection, and the Effects of Noise. Com Plex Sy, 9, 193–212. https://wpmedia.wolfram.com/sites/13/2018/02/09-3-2.pdf
- Jebari, K., & Madiafi, M. (2013). Selection Methods for Genetic Algorithms Selection Methods for Genetic Algorithms. Int. J. Emerg. Sci, 3(4), 333–344.
- Lipowski, A., & Lipowska, D. (2012). Roulette-wheel selection via stochastic acceptance. Physica A: Statistical Mechanics and Its Applications, 391(6), 2193–2196. https://doi.org/10.1016/j.physa.2011.12.004
- Harifi, S., & Mohamaddoust, R. (2023). Zigzag mutation: a new mutation operator to improve the genetic algorithm. Multimedia Tools and Applications, 82(29), 45411–45432. https://doi.org/10.1007/s11042-023-15518-3
- Fahmi Abd Samad, M., & Ayiesya Zainuddin, F. (2020). A Review of Crossover Methods and Problem Representation of Genetic Algorithm in Recent Engineering Applications A Review of Crossover Methods and Problem Representation of Genetic Algorithm in Recent Engineering Applications. International Journal of Advanced Science and Technology, 29(6s), 759–769.
- Chen, T., Tang, K., Chen, G., & Yao, X. (2012). A large population size can be unhelpful in evolutionary algorithms. Theoretical Computer Science, 436, 54–70. https://doi.org/10.1016/j.tcs.2011.02.016
- Deep, K., & Thakur, M. (2007). A new crossover operator for real coded genetic algorithms. Applied Mathematics and Computation, 188(1), 895–911. https://doi.org/10.1016/j.amc.2006.10.047
- Lobo, F. G., & Lima, C. F. (2007). Adaptive Population Sizing Schemes in Genetic Algorithms. Springer EBooks, 185–204. https://doi.org/10.1007/978-3-540-69432-8_9
- Hassan, R., Cohanim, B., de Weck, O., & Venter, G. (2005). A Comparison of Particle Swarm Optimization and the Genetic Algorithm. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. https://doi.org/10.2514/6.2005-1897
- Deb, K., & Agrawal, R. (2017). Simulated Binary Crossover for Continuous Search Space. Complex Systems. https://www.semanticscholar.org/paper/Simulated-Binary-Crossover-for-Continuous-Search-Deb-Agrawal/b8ee6b68520ae0291075cb1408046a7dff9dd9ad