-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLR3.py
83 lines (55 loc) · 2.33 KB
/
LR3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import LR1
import numpy as np
import scipy.stats as sp
def get_stat(s: list, count: int):
print('----------------------------------------------------------------------')
print(LR1.get_stat(s))
otr, j, h_interval = LR1.get_interval_stat(s, count)
a, b = otr[0][0], otr[-1][1]
step = otr[0][1] - otr[0][0]
mid_points = [a + i * step - step / 2 for i in range(1, count + 1)]
m = LR1.get_mean(s)
S = LR1.get_S_squared(len(s), LR1.get_D(s, m))
print(f'm = {m}')
print(f'S = {S ** (1 / 2)}')
LR1.plot_interval_stat(s, mid_points)
print('----------------------------------------------------------------------')
def main():
def print_bounds(s):
print('Границы негруппированной выборки:')
mean = LR1.get_mean(s)
var = LR1.get_D(s, mean)
S = LR1.get_S_squared(50, var)
i1 = sp.t.interval(confidence=0.95, df=len(s) - 1, loc=np.mean(s), scale=sp.sem(s))
print(f'mx {i1}')
i1 = ((50 - 1)*S/sp.chi2(50 - 1).ppf(0.975), (50 - 1)*S/sp.chi2(50 - 1).ppf(0.025))
print(f'sig {i1[0], i1[1]}')
print('Границы группированной выборки:')
otr, j, h_interval = LR1.get_interval_stat(s, 7)
mid = LR1.get_mid_points(otr)
mean = LR1.get_group_mean(mid, j, 50)
var = LR1.get_D_gruop(mid, j, 50, mean)
S = LR1.get_S_squared(50, var)**(1/2)
i2 = sp.t.interval(confidence=0.95, df=len(mid) - 1, loc=mean, scale=S)
print(f'm {i2}')
i2 = ((50 - 1) * S ** 2 / sp.chi2(50 - 1).ppf(0.975), (50 - 1) * S **2 / sp.chi2(50 - 1).ppf(0.025))
print(f'sig {i2[0], i2[1]}')
def task():
s = LR1.read_var('data.xlsx', 9, 'Y', LR=2)
s = sorted(s[1:len(s)])
print(LR1.get_stat(s))
LR1.task3(s, count, A=s[0], B=s[-1], cov=False, p=False, moda=False, median=False)
print_bounds(s)
n = sorted(np.random.normal(loc=N, size=size))
r = sorted(np.random.uniform(low=a, high=b, size=size))
e = sorted(np.random.exponential(scale=l, size=size))
get_stat(n, count)
get_stat(r, count)
get_stat(e, count)
N = 9
size = 200
count = 7
a, b = N, 2*N
l = N
task()
main()