Skip to content

TheDataCoder/MalReq_Detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Project structure

├── README.md
├── Dockerfile
├── models
│   ├── dbscan.pt
│   ├── hdbscan.pt
│   ├── isolation_forest.pt
│   ├── kmeans.pt
│   └── scaler.pt
├── notebooks
│   └── solution_pt.ipynb
├── requirements.txt
└── src
    ├── openapi.json
    ├── predict_flasgger.py
    ├── predict_streamlit.py
    ├── preprocess_data.py
    └── utils.py

Installation process

  • This repository requires a working installation of docker
  • You might want to install anaconda and npm
  • Please refer to requirements.txt for the required packages or run a docker container: either use pip or anaconda

Solution information

  • I've used KMeans, DBScan, HDBScan and IsolationRandomForest as main algorithms for segmentation.
  • IsolationRandomForest provides general solution - "suspicious requests" predictions, while other algorithms segment the data into number of clusters.

Run options

  • Run streamlit app and upload csv file to get the predictions: streamlit run predict_streamlit.py
  • Send POST request to the flask app: predict_flasgger.py
  • Can be deployed with a docker via docker build -t pt_project_api .

Todos:

  • Add unit tests
  • Add multiple model inference options

Licence

Licenced by Apache 2.0 licence;

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages