-
Notifications
You must be signed in to change notification settings - Fork 214
/
Copy pathapp.py
101 lines (85 loc) · 3.85 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import copy
import gradio as gr
import torch
from basicsr.utils import tensor2img
import os
from huggingface_hub import hf_hub_url
import subprocess
import shlex
import cv2
from omegaconf import OmegaConf
from demo import create_demo_sketch, create_demo_canny, create_demo_pose
from Adapter.Sampling import diffusion_inference
from configs.utils import instantiate_from_config
from Adapter.extra_condition.api import get_cond_model, ExtraCondition
from Adapter.extra_condition import api
from Adapter.inference_base import get_base_argument_parser
torch.set_grad_enabled(False)
urls = {
'TencentARC/T2I-Adapter':[
'models_XL/adapter-xl-canny.pth', 'models_XL/adapter-xl-sketch.pth',
'models_XL/adapter-xl-openpose.pth', 'third-party-models/body_pose_model.pth',
'third-party-models/table5_pidinet.pth'
]
}
if os.path.exists('checkpoints') == False:
os.mkdir('checkpoints')
for repo in urls:
files = urls[repo]
for file in files:
url = hf_hub_url(repo, file)
name_ckp = url.split('/')[-1]
save_path = os.path.join('checkpoints',name_ckp)
if os.path.exists(save_path) == False:
subprocess.run(shlex.split(f'wget {url} -O {save_path}'))
parser = get_base_argument_parser()
global_opt = parser.parse_args()
global_opt.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
DESCRIPTION = '# [T2I-Adapter-XL](https://github.com/TencentARC/T2I-Adapter)'
DESCRIPTION += f'<p>Gradio demo for **T2I-Adapter-XL**: [[GitHub]](https://github.com/TencentARC/T2I-Adapter). If T2I-Adapter-XL is helpful, please help to ⭐ the [Github Repo](https://github.com/TencentARC/T2I-Adapter) and recommend it to your friends 😊 </p>'
# DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/Adapter/T2I-Adapter?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
# diffusion sampler creation
sampler = diffusion_inference('stabilityai/stable-diffusion-xl-base-1.0')
def run(input_image, in_type, prompt, a_prompt, n_prompt, ddim_steps, scale, seed, cond_name, con_strength):
in_type = in_type.lower()
prompt = prompt+', '+a_prompt
config = OmegaConf.load(f'configs/inference/Adapter-XL-{cond_name}.yaml')
# Adapter creation
adapter_config = config.model.params.adapter_config
adapter = instantiate_from_config(adapter_config).cuda()
adapter.load_state_dict(torch.load(config.model.params.adapter_config.pretrained))
cond_model = get_cond_model(global_opt, getattr(ExtraCondition, cond_name))
process_cond_module = getattr(api, f'get_cond_{cond_name}')
# diffusion generation
cond = process_cond_module(
global_opt,
input_image,
cond_inp_type = in_type,
cond_model = cond_model
)
with torch.no_grad():
adapter_features = adapter(cond)
for i in range(len(adapter_features)):
adapter_features[i] = adapter_features[i]*con_strength
result = sampler.inference(
prompt = prompt,
prompt_n = n_prompt,
steps = ddim_steps,
adapter_features = copy.deepcopy(adapter_features),
guidance_scale = scale,
size = (cond.shape[-2], cond.shape[-1]),
seed= seed,
)
im_cond = tensor2img(cond)
return result[:,:,::-1], im_cond
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.TabItem('Sketch guided'):
create_demo_sketch(run)
with gr.TabItem('Canny guided'):
create_demo_canny(run)
with gr.TabItem('Keypoint guided'):
create_demo_pose(run)
demo.queue(concurrency_count=3, max_size=20)
demo.launch(server_name="0.0.0.0")