-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
39 lines (39 loc) · 1.26 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Package: mifa
Title: Multiple Imputation for Exploratory Factor Analysis
Version: 0.2.0
Authors@R: c(
person("Vahid", "Nassiri", role = "aut"),
person("Anikó", "Lovik", role = "aut"),
person("Geert ", "Molenberghs", role = "aut"),
person("Geert ", "Verbeke", role = "aut"),
person("Tobias", "Busch", email = "teebusch@gmail.com",
role = c("aut", "cre"),
comment = c(ORCID = "https://orcid.org/0000-0002-8390-7892"))
)
URL: https://github.com/teebusch/mifa
BugReports: https://github.com/teebusch/mifa/issues
Imports:
stats,
mice,
dplyr,
checkmate
Suggests:
psych,
testthat,
knitr,
rmarkdown,
ggplot2,
tidyr,
covr
Description: Impute the covariance matrix of incomplete data so that factor
analysis can be performed. Imputations are made using multiple imputation
by Multivariate Imputation with Chained Equations (MICE) and combined with
Rubin's rules. Parametric Fieller confidence intervals and nonparametric
bootstrap confidence intervals can be obtained for the variance explained by
different numbers of principal components. The method is described in
Nassiri et al. (2018) <doi:10.3758/s13428-017-1013-4>.
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.1.1
Roxygen: list(markdown = TRUE)