-
Notifications
You must be signed in to change notification settings - Fork 0
/
ParticleFiltersFinal.py
363 lines (296 loc) · 11.8 KB
/
ParticleFiltersFinal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# --------------
# USER INSTRUCTIONS
#
# Now you will put everything together.
#
# First make sure that your sense and move functions
# work as expected for the test cases provided at the
# bottom of the previous two programming assignments.
# Once you are satisfied, copy your sense and move
# definitions into the robot class on this page, BUT
# now include noise.
#
# A good way to include noise in the sense step is to
# add Gaussian noise, centered at zero with variance
# of self.bearing_noise to each bearing. You can do this
# with the command random.gauss(0, self.bearing_noise)
#
# In the move step, you should make sure that your
# actual steering angle is chosen from a Gaussian
# distribution of steering angles. This distribution
# should be centered at the intended steering angle
# with variance of self.steering_noise.
#
# Feel free to use the included set_noise function.
#
# Please do not modify anything except where indicated
# below.
from math import *
import random
# --------
#
# some top level parameters
#
max_steering_angle = pi / 4.0 # You do not need to use this value, but keep in mind the limitations of a real car.
bearing_noise = 0.1 # Noise parameter: should be included in sense function.
steering_noise = 0.1 # Noise parameter: should be included in move function.
distance_noise = 5.0 # Noise parameter: should be included in move function.
tolerance_xy = 15.0 # Tolerance for localization in the x and y directions.
tolerance_orientation = 0.25 # Tolerance for orientation.
# --------
#
# the "world" has 4 landmarks.
# the robot's initial coordinates are somewhere in the square
# represented by the landmarks.
#
# NOTE: Landmark coordinates are given in (y, x) form and NOT
# in the traditional (x, y) format!
landmarks = [[0.0, 100.0], [0.0, 0.0], [100.0, 0.0], [100.0, 100.0]] # position of 4 landmarks in (y, x) format.
world_size = 100.0 # world is NOT cyclic. Robot is allowed to travel "out of bounds"
# ------------------------------------------------
#
# this is the robot class
#
class robot:
# --------
# init:
# creates robot and initializes location/orientation
#
def __init__(self, length = 20.0):
self.x = random.random() * world_size # initial x position
self.y = random.random() * world_size # initial y position
self.orientation = random.random() * 2.0 * pi # initial orientation
self.length = length # length of robot
self.bearing_noise = 0.0 # initialize bearing noise to zero
self.steering_noise = 0.0 # initialize steering noise to zero
self.distance_noise = 0.0 # initialize distance noise to zero
# --------
# set:
# sets a robot coordinate
#
def set(self, new_x, new_y, new_orientation):
if new_orientation < 0 or new_orientation >= 2 * pi:
raise ValueError, 'Orientation must be in [0..2pi]'
self.x = float(new_x)
self.y = float(new_y)
self.orientation = float(new_orientation)
# --------
# set_noise:
# sets the noise parameters
#
def set_noise(self, new_b_noise, new_s_noise, new_d_noise):
# makes it possible to change the noise parameters
# this is often useful in particle filters
self.bearing_noise = float(new_b_noise)
self.steering_noise = float(new_s_noise)
self.distance_noise = float(new_d_noise)
# --------
# measurement_prob
# computes the probability of a measurement
#
def measurement_prob(self, measurements):
# calculate the correct measurement
predicted_measurements = self.sense(0) # Our sense function took 0 as an argument to switch off noise.
# compute errors
error = 1.0
for i in range(len(measurements)):
error_bearing = abs(measurements[i] - predicted_measurements[i])
error_bearing = (error_bearing + pi) % (2.0 * pi) - pi # truncate
# update Gaussian
error *= (exp(- (error_bearing ** 2) / (self.bearing_noise ** 2) / 2.0) /
sqrt(2.0 * pi * (self.bearing_noise ** 2)))
return error
def __repr__(self): #allows us to print robot attributes.
return '[x=%.6s y=%.6s orient=%.6s]' % (str(self.x), str(self.y),
str(self.orientation))
############# ONLY ADD/MODIFY CODE BELOW HERE ###################
# --------
# move:
#
# copy your code from the previous exercise
# and modify it so that it simulates motion noise
# according to the noise parameters
# self.steering_noise
# self.distance_noise
def move(self, motions, tolerance = 0.001):
steering = motions[0]
distance = motions[1]
res = robot()
res.length = self.length
res.bearing_noise = self.bearing_noise
res.steering_noise = self.steering_noise
res.distance_noise = self.distance_noise
steering2 = random.gauss(steering, res.steering_noise)
distance2 = random.gauss(distance, res.distance_noise)
beta = tan(steering2) * distance2 /res.length
R = distance2/beta
if abs(beta) < tolerance:
res.x = self.x + distance2 * cos(self.orientation)
res.y = self.y + distance2 * sin(self.orientation)
res.orientation = (self.orientation + beta) % (2*pi)
else:
cx = self.x - sin (self.orientation) * R
cy = self.y + cos (self.orientation) * R
res.orientation = (self.orientation + beta) % (2*pi)
res.x = cx + sin(self.orientation + beta) * R
res.y = cy - cos(self.orientation + beta) * R
return res
# --------
# sense:
#
# copy your code from the previous exercise
# and modify it so that it simulates bearing noise
# according to
# self.bearing_noise
def sense(self,add_noise = 1):
measurements = []
for i in range(len(landmarks)):
bearing = atan2(landmarks[i][0] - self.y, landmarks[i][1] - self.x) - self.orientation
if add_noise:
bearing += random.gauss(0.0,self.bearing_noise)
bearing %= (2*pi)
measurements.append(bearing)
return measurements
############## ONLY ADD/MODIFY CODE ABOVE HERE ####################
# --------
#
# extract position from a particle set
#
def get_position(p):
x = 0.0
y = 0.0
orientation = 0.0
for i in range(len(p)):
x += p[i].x
y += p[i].y
# orientation is tricky because it is cyclic. By normalizing
# around the first particle we are somewhat more robust to
# the 0=2pi problem
orientation += (((p[i].orientation - p[0].orientation + pi) % (2.0 * pi))
+ p[0].orientation - pi)
return [x / len(p), y / len(p), orientation / len(p)]
# --------
#
# The following code generates the measurements vector
# You can use it to develop your solution.
#
def generate_ground_truth(motions):
myrobot = robot()
myrobot.set_noise(bearing_noise, steering_noise, distance_noise)
Z = []
T = len(motions)
for t in range(T):
myrobot = myrobot.move(motions[t])
Z.append(myrobot.sense())
#print 'Robot: ', myrobot
return [myrobot, Z]
# --------
#
# The following code prints the measurements associated
# with generate_ground_truth
#
def print_measurements(Z):
T = len(Z)
print 'measurements = [[%.8s, %.8s, %.8s, %.8s],' % \
(str(Z[0][0]), str(Z[0][1]), str(Z[0][2]), str(Z[0][3]))
for t in range(1,T-1):
print ' [%.8s, %.8s, %.8s, %.8s],' % \
(str(Z[t][0]), str(Z[t][1]), str(Z[t][2]), str(Z[t][3]))
print ' [%.8s, %.8s, %.8s, %.8s]]' % \
(str(Z[T-1][0]), str(Z[T-1][1]), str(Z[T-1][2]), str(Z[T-1][3]))
# --------
#
# The following code checks to see if your particle filter
# localizes the robot to within the desired tolerances
# of the true position. The tolerances are defined at the top.
#
def check_output(final_robot, estimated_position):
error_x = abs(final_robot.x - estimated_position[0])
error_y = abs(final_robot.y - estimated_position[1])
error_orientation = abs(final_robot.orientation - estimated_position[2])
error_orientation = (error_orientation + pi) % (2.0 * pi) - pi
correct = error_x < tolerance_xy and error_y < tolerance_xy \
and error_orientation < tolerance_orientation
return correct
def particle_filter(motions, measurements, N=500): # I know it's tempting, but don't change N!
# --------
#
# Make particles
#
p = []
for i in range(N):
r = robot()
r.set_noise(bearing_noise, steering_noise, distance_noise)
p.append(r)
# --------
#
# Update particles
#
for t in range(len(motions)):
# motion update (prediction)
p2 = []
for i in range(N):
p2.append(p[i].move(motions[t]))
p = p2
# measurement update
w = []
for i in range(N):
w.append(p[i].measurement_prob(measurements[t]))
# resampling
p3 = []
index = int(random.random() * N)
beta = 0.0
mw = max(w)
for i in range(N):
beta += random.random() * 2.0 * mw
while beta > w[index]:
beta -= w[index]
index = (index + 1) % N
p3.append(p[index])
p = p3
return get_position(p)
## IMPORTANT: You may uncomment the test cases below to test your code.
## But when you submit this code, your test cases MUST be commented
## out.
##
## You can test whether your particle filter works using the
## function check_output (see test case 2). We will be using a similar
## function. Note: Even for a well-implemented particle filter this
## function occasionally returns False. This is because a particle
## filter is a randomized algorithm. We will be testing your code
## multiple times. Make sure check_output returns True at least 80%
## of the time.
## --------
## TEST CASES:
##
##1) Calling the particle_filter function with the following
## motions and measurements should return a [x,y,orientation]
## vector near [x=93.476 y=75.186 orient=5.2664], that is, the
## robot's true location.
##
#motions = [[2. * pi / 10, 20.] for row in range(8)]
#measurements = [[4.746936, 3.859782, 3.045217, 2.045506],
# [3.510067, 2.916300, 2.146394, 1.598332],
# [2.972469, 2.407489, 1.588474, 1.611094],
# [1.906178, 1.193329, 0.619356, 0.807930],
# [1.352825, 0.662233, 0.144927, 0.799090],
# [0.856150, 0.214590, 5.651497, 1.062401],
# [0.194460, 5.660382, 4.761072, 2.471682],
# [5.717342, 4.736780, 3.909599, 2.342536]]
#print particle_filter(motions, measurements)
## 2) You can generate your own test cases by generating
## measurements using the generate_ground_truth function.
## It will print the robot's last location when calling it.
##
##
#number_of_iterations = 6
#motions = [[2. * pi / 20, 12.] for row in range(number_of_iterations)]
##
#x = generate_ground_truth(motions)
#final_robot = x[0]
#measurements = x[1]
#estimated_position = particle_filter(motions, measurements)
#print_measurements(measurements)
#print 'Ground truth: ', final_robot
#print 'Particle filter: ', estimated_position
#print 'Code check: ', check_output(final_robot, estimated_position)