forked from binary-husky/gpt_academic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocker-compose.yml
232 lines (204 loc) · 14.8 KB
/
docker-compose.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
## ===================================================
# docker-compose.yml
## ===================================================
# 1. 请在以下方案中选择任意一种,然后删除其他的方案
# 2. 修改你选择的方案中的environment环境变量,详情请见github wiki或者config.py
# 3. 选择一种暴露服务端口的方法,并对相应的配置做出修改:
# 「方法1: 适用于Linux,很方便,可惜windows不支持」与宿主的网络融合为一体,这个是默认配置
# network_mode: "host"
# 「方法2: 适用于所有系统包括Windows和MacOS」端口映射,把容器的端口映射到宿主的端口(注意您需要先删除network_mode: "host",再追加以下内容)
# ports:
# - "12345:12345" # 注意!12345必须与WEB_PORT环境变量相互对应
# 4. 最后`docker-compose up`运行
# 5. 如果希望使用显卡,请关注 LOCAL_MODEL_DEVICE 和 英伟达显卡运行时 选项
## ===================================================
# 1. Please choose one of the following options and delete the others.
# 2. Modify the environment variables in the selected option, see GitHub wiki or config.py for more details.
# 3. Choose a method to expose the server port and make the corresponding configuration changes:
# [Method 1: Suitable for Linux, convenient, but not supported for Windows] Fusion with the host network, this is the default configuration
# network_mode: "host"
# [Method 2: Suitable for all systems including Windows and MacOS] Port mapping, mapping the container port to the host port (note that you need to delete network_mode: "host" first, and then add the following content)
# ports:
# - "12345: 12345" # Note! 12345 must correspond to the WEB_PORT environment variable.
# 4. Finally, run `docker-compose up`.
# 5. If you want to use a graphics card, pay attention to the LOCAL_MODEL_DEVICE and Nvidia GPU runtime options.
## ===================================================
## ===================================================
## 「方案零」 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个)
## ===================================================
version: '3'
services:
gpt_academic_full_capability:
image: ghcr.io/binary-husky/gpt_academic_with_all_capacity:master
environment:
# 请查阅 `config.py`或者 github wiki 以查看所有的配置信息
API_KEY: ' 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 '
# USE_PROXY: ' True '
# proxies: ' { "http": "http://localhost:10881", "https": "http://localhost:10881", } '
LLM_MODEL: ' gpt-3.5-turbo '
AVAIL_LLM_MODELS: ' ["gpt-3.5-turbo", "gpt-4", "qianfan", "sparkv2", "spark", "chatglm"] '
BAIDU_CLOUD_API_KEY : ' bTUtwEAveBrQipEowUvDwYWq '
BAIDU_CLOUD_SECRET_KEY : ' jqXtLvXiVw6UNdjliATTS61rllG8Iuni '
XFYUN_APPID: ' 53a8d816 '
XFYUN_API_SECRET: ' MjMxNDQ4NDE4MzM0OSNlNjQ2NTlhMTkx '
XFYUN_API_KEY: ' 95ccdec285364869d17b33e75ee96447 '
ENABLE_AUDIO: ' False '
DEFAULT_WORKER_NUM: ' 20 '
WEB_PORT: ' 12345 '
ADD_WAIFU: ' False '
ALIYUN_APPKEY: ' RxPlZrM88DnAFkZK '
THEME: ' Chuanhu-Small-and-Beautiful '
ALIYUN_ACCESSKEY: ' LTAI5t6BrFUzxRXVGUWnekh1 '
ALIYUN_SECRET: ' eHmI20SVWIwQZxCiTD2bGQVspP9i68 '
# LOCAL_MODEL_DEVICE: ' cuda '
# 加载英伟达显卡运行时
# runtime: nvidia
# deploy:
# resources:
# reservations:
# devices:
# - driver: nvidia
# count: 1
# capabilities: [gpu]
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
network_mode: "host"
# 「WEB_PORT暴露方法2: 适用于所有系统」端口映射
# ports:
# - "12345:12345" # 12345必须与WEB_PORT相互对应
# 启动容器后,运行main.py主程序
command: >
bash -c "python3 -u main.py"
## ===================================================
## 「方案一」 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
## ===================================================
version: '3'
services:
gpt_academic_nolocalllms:
image: ghcr.io/binary-husky/gpt_academic_nolocal:master # (Auto Built by Dockerfile: docs/GithubAction+NoLocal)
environment:
# 请查阅 `config.py` 以查看所有的配置信息
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
USE_PROXY: ' True '
proxies: ' { "http": "socks5h://localhost:10880", "https": "socks5h://localhost:10880", } '
LLM_MODEL: ' gpt-3.5-turbo '
AVAIL_LLM_MODELS: ' ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "sparkv2", "qianfan"] '
WEB_PORT: ' 22303 '
ADD_WAIFU: ' True '
# THEME: ' Chuanhu-Small-and-Beautiful '
# DEFAULT_WORKER_NUM: ' 10 '
# AUTHENTICATION: ' [("username", "passwd"), ("username2", "passwd2")] '
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
network_mode: "host"
# 启动命令
command: >
bash -c "python3 -u main.py"
### ===================================================
### 「方案二」 如果需要运行ChatGLM + Qwen + MOSS等本地模型
### ===================================================
version: '3'
services:
gpt_academic_with_chatglm:
image: ghcr.io/binary-husky/gpt_academic_chatglm_moss:master # (Auto Built by Dockerfile: docs/Dockerfile+ChatGLM)
environment:
# 请查阅 `config.py` 以查看所有的配置信息
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
USE_PROXY: ' True '
proxies: ' { "http": "socks5h://localhost:10880", "https": "socks5h://localhost:10880", } '
LLM_MODEL: ' gpt-3.5-turbo '
AVAIL_LLM_MODELS: ' ["chatglm", "qwen", "moss", "gpt-3.5-turbo", "gpt-4", "newbing"] '
LOCAL_MODEL_DEVICE: ' cuda '
DEFAULT_WORKER_NUM: ' 10 '
WEB_PORT: ' 12303 '
ADD_WAIFU: ' True '
# AUTHENTICATION: ' [("username", "passwd"), ("username2", "passwd2")] '
# 显卡的使用,nvidia0指第0个GPU
runtime: nvidia
devices:
- /dev/nvidia0:/dev/nvidia0
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
network_mode: "host"
# 启动命令
command: >
bash -c "python3 -u main.py"
# P.S. 通过对 command 进行微调,可以便捷地安装额外的依赖
# command: >
# bash -c "pip install -r request_llms/requirements_qwen.txt && python3 -u main.py"
### ===================================================
### 「方案三」 如果需要运行ChatGPT + LLAMA + 盘古 + RWKV本地模型
### ===================================================
version: '3'
services:
gpt_academic_with_rwkv:
image: ghcr.io/binary-husky/gpt_academic_jittorllms:master
environment:
# 请查阅 `config.py` 以查看所有的配置信息
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,fkxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
USE_PROXY: ' True '
proxies: ' { "http": "socks5h://localhost:10880", "https": "socks5h://localhost:10880", } '
LLM_MODEL: ' gpt-3.5-turbo '
AVAIL_LLM_MODELS: ' ["gpt-3.5-turbo", "newbing", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"] '
LOCAL_MODEL_DEVICE: ' cuda '
DEFAULT_WORKER_NUM: ' 10 '
WEB_PORT: ' 12305 '
ADD_WAIFU: ' True '
# AUTHENTICATION: ' [("username", "passwd"), ("username2", "passwd2")] '
# 显卡的使用,nvidia0指第0个GPU
runtime: nvidia
devices:
- /dev/nvidia0:/dev/nvidia0
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
network_mode: "host"
# 启动命令
command: >
python3 -u main.py
## ===================================================
## 「方案四」 ChatGPT + Latex
## ===================================================
version: '3'
services:
gpt_academic_with_latex:
image: ghcr.io/binary-husky/gpt_academic_with_latex:master # (Auto Built by Dockerfile: docs/GithubAction+NoLocal+Latex)
environment:
# 请查阅 `config.py` 以查看所有的配置信息
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
USE_PROXY: ' True '
proxies: ' { "http": "socks5h://localhost:10880", "https": "socks5h://localhost:10880", } '
LLM_MODEL: ' gpt-3.5-turbo '
AVAIL_LLM_MODELS: ' ["gpt-3.5-turbo", "gpt-4"] '
LOCAL_MODEL_DEVICE: ' cuda '
DEFAULT_WORKER_NUM: ' 10 '
WEB_PORT: ' 12303 '
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
network_mode: "host"
# 启动命令
command: >
bash -c "python3 -u main.py"
## ===================================================
## 「方案五」 ChatGPT + 语音助手 (请先阅读 docs/use_audio.md)
## ===================================================
version: '3'
services:
gpt_academic_with_audio:
image: ghcr.io/binary-husky/gpt_academic_audio_assistant:master
environment:
# 请查阅 `config.py` 以查看所有的配置信息
API_KEY: ' fk195831-IdP0Pb3W6DCMUIbQwVX6MsSiyxwqybyS '
USE_PROXY: ' False '
proxies: ' None '
LLM_MODEL: ' gpt-3.5-turbo '
AVAIL_LLM_MODELS: ' ["gpt-3.5-turbo", "gpt-4"] '
ENABLE_AUDIO: ' True '
LOCAL_MODEL_DEVICE: ' cuda '
DEFAULT_WORKER_NUM: ' 20 '
WEB_PORT: ' 12343 '
ADD_WAIFU: ' True '
THEME: ' Chuanhu-Small-and-Beautiful '
ALIYUN_APPKEY: ' RoP1ZrM84DnAFkZK '
ALIYUN_TOKEN: ' f37f30e0f9934c34a992f6f64f7eba4f '
# (无需填写) ALIYUN_ACCESSKEY: ' LTAI5q6BrFUzoRXVGUWnekh1 '
# (无需填写) ALIYUN_SECRET: ' eHmI20AVWIaQZ0CiTD2bGQVsaP9i68 '
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
network_mode: "host"
# 启动命令
command: >
bash -c "python3 -u main.py"