Skip to content

Latest commit

 

History

History
173 lines (141 loc) · 7.14 KB

README.md

File metadata and controls

173 lines (141 loc) · 7.14 KB

Efficient and Robust Semantic Mapping for Indoor Environments

This repository contains the code to our paper "Efficient and Robust Semantic Mapping for Indoor Environments" (IEEE Xplore, arXiv).


(Click on the image to open YouTube video)

You may also want to have a look at our follow-up work: PanopticNDT

License and Citations

The source code and the network weights are published under BSD 3-Clause license, see license file for details.

If you use the source code or the network weights, please cite the following paper:

Seichter, D., Langer, P., Wengefeld, T., Lewandowski, B., Höchemer, D., Gross, H.-M. Efficient and Robust Semantic Mapping for Indoor Environments in IEEE International Conference on Robotics and Automation (ICRA), pp. 9221-9227, 2022.

BibTeX
@inproceedings{semanticndtmapping2022icra,
  title	    = {{Efficient and Robust Semantic Mapping for Indoor Environments}},
  author    = {Seichter, Daniel and Langer, Patrick and Wengefeld, Tim and Lewandowski, Benjamin and H{\"o}chemer, Dominik and Gross, Horst-Michael},
  booktitle = {IEEE International Conference on Robotics and Automation (ICRA)},
  year      = {2022},
  volume    = {},
  number    = {},
  pages     = {9221-9227}
}

@article{semanticndtmapping2022arXiv,
  title	    = {{Efficient and Robust Semantic Mapping for Indoor Environments}},
  author    = {Seichter, Daniel and Langer, Patrick and Wengefeld, Tim and Lewandowski, Benjamin and H{\"o}chemer, Dominik and Gross, Horst-Michael},
  journal   = {arXiv preprint arXiv:2203.05836},
  year      = {2022}
}

Note that the preprint was accepted to be published in IEEE International Conference on Robotics and Automation (ICRA).

Setup

  1. Clone repository:

    # do not forget the '--recursive' ;)
    git clone --recursive https://github.com/TUI-NICR/semantic-mapping.git
    
    cd /path/to/this/repository
  2. Set up anaconda environment including all dependencies:

    # option 1: create conda environment from YAML file
    conda env create -f semantic_mapping.yaml
    conda activate semantic_mapping
    
    # option 2: create new environment (see last tested versions)
    conda create -n semantic_mapping python==3.8.12 anaconda==2021.11
    conda activate semantic_mapping
    pip install onnx==1.11.0
    pip install opencv-python==4.2.0.34
    pip install tqdm==4.62.3
    # ONNXRuntime with CUDA support
    conda install -c conda-forge cudnn==8.2.1.32
    pip install onnxruntime-gpu==1.11.0
    
    
    # finally, install our package for preparing and using the Hypersim dataset
    pip install ./lib/nicr-scene-analysis-datasets[with_preparation]

Usage

  1. Prepare the Hypersim dataset:

    # download and extract raw dataset (2x ~1.8TB)
    HYPERSIM_DOWNLOAD_PATH='./datasets/hypersim_preparation'
    wget https://raw.githubusercontent.com/apple/ml-hypersim/6cbaa80207f44a312654e288cf445016c84658a1/code/python/tools/dataset_download_images.py
    python dataset_download_images.py --downloads_dir $HYPERSIM_DOWNLOAD_PATH
    
    # prepare dataset (~157.5 GB, extract required data, convert to our format, blacklist some scenes/trajectories)
    python -m nicr_scene_analysis_datasets.datasets.hypersim.prepare_dataset \
        ./datasets/hypersim \
        $HYPERSIM_DOWNLOAD_PATH \
        --additional-subsamples 2 5 10 20 \
        --multiprocessing
    
    # just in case you want to delete the downloaded raw data (2x ~1.8TB)
    rm -rf $HYPERSIM_DOWNLOAD_PATH
    

    For further details, we refer to the documentation of our nicr-scene-analysis-datasets python package.

  2. Download pretrained model:
    We provide the weights of our selected ESANet-R34-NBt1D (enhanced ResNet34-based encoder utilizing the Non-Bottleneck-1D block) trained on the Hypersim dataset. To ease both application and deployment, we removed all dependencies (PyTorch, ...) and provide the weights in ONNX format.

    Click here to download the model and extract it to ./trained_models or use:

    pip install gdown    # last tested: 4.4.0
    gdown 1zUxSqq4zdC3yQ4RxiHvTh8CX7-115KUg --output ./trained_models/
    tar -xvzf ./trained_models/model_hypersim.tar.gz -C ./trained_models/
    

    The model was selected based on the mean intersection over union (mIoU) on the validation split: 0.4591184410660463 at epoch 498. On the test split, the model achieves a mIoU of 0.41168890871760977. Note, similar to other approaches, we only evaluate up to a reasonable maximum distance of 20m from the camera. For more detail, see evaluate.py.

  3. Extract predicted semantic segmentation:

    # use default paths (~74.3GB for topk with k=3)
    python predict.py \
    	--onnx-filepath ./trained_models/model_hypersim.onnx \
    	--dataset-path ./datasets/hypersim \
    	--dataset-split test \
    	--topk 3 \
    	--output-path ./datasets/hypersim_predictions
    
    # for more details, see:
    python predict.py --help

    For the example above, the predicted segmentations are stored at ./datasets/hypersim_predictions/test/. See the semantic_40_topk subfolder for the predicted topK segmentation outputs and semantic_40/ or semantic_40_colored/ for the predicted (colored) top1 labels.

  4. Run your semantic mapping experiments and store the results with the following folder structure:

    path/to/results/
    └── test
    	├── results1
    	│   ├── ai_001_010
    	│   │   ├── cam_00
    	│   │   │   ├── 0000.png
    	│   │   │   ├── ...
    	├── results2
    	│   ├── ai_001_010
    	│   │   ├── cam_00
    	│   │   │   ├── 0000.png
    	│   │   │   ├── ...
    

    You may have a look at ./lib/nicr-scene-analysis-datasets/nicr_scene_analysis_datasets/mira/_hypersim_reader.py for a starting point. This class shows, how the Hypersim dataset is processed in our pipelines.

  5. Run evaluation:

    # use default paths
    python evaluate.py \
    	--dataset-path ./datasets/hypersim \
    	--dataset-split test \
    	--predictions-path ./datasets/hypersim_predictions
    	[--result-paths path/to/results/test/results1 path/to/results/test/results2]
    
    # for more details, see:
    python evaluate.py --help

    For the predicted segmentation of our ONNX model, you should obtain measures similar to:

    miou_gt_masked: 0.41168890871760977
    mean_pacc_gt_masked: 0.5683601556433829
    invalid_ratio: 0.0
    invalid_mean_ratio_gt_masked: 0.0
    vwmiou_gt_masked: 0.41168890871760977
    vwmean_pacc_gt_masked: 0.5683601556433829
    

    Check the created results.json at the predictions folder for more measures (e.g. ./datasets/hypersim_predictions/test/semantic_40/results.json)