-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtable_s2.py
37 lines (30 loc) · 1.1 KB
/
table_s2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 28 2022
@author: davidsantiagoquevedo
@author: ntorresd
"""
import warnings
warnings.filterwarnings('ignore')
import yaml
import pandas as pd
config = yaml.load(open("config.yml", "r"))["default"]
DATA_PATH = config['PATHS']['DATA_PATH']
VAR_PATH = config['PATHS']['OUT_PATH'].format(dir = 'genomics')
OUT_PATH = config['PATHS']['OUT_PATH'].format(dir = 'tables')
df_mean = pd.read_csv(VAR_PATH + 'advantage_mean.csv')
df_025 = pd.read_csv(VAR_PATH + 'advantage_025.csv')
df_975 = pd.read_csv(VAR_PATH + 'advantage_975.csv')
# Waves information
df_res = pd.DataFrame({})
for col in df_mean.columns.to_list():
if col == 'pivot_variant':
df_res[col] = df_mean[col]
else:
df_res[col] = df_mean[col].astype(str)+ ' (' + df_025[col].astype(str) + ', ' + df_975[col].astype(str) + ')'
for i in range(df_res.shape[0]+1):
for j in range(df_res.shape[1]):
if i-1 == j:
df_res[df_res.columns[i]].iloc[j] ='1'
df_res = df_res.rename(columns = {'pivot_variant' : 'Pivot variant'})
df_res.to_csv(OUT_PATH + 'table_s2.csv', index = False)