-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathinput_pipeline.py
executable file
·188 lines (148 loc) · 5.51 KB
/
input_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import numpy as np
import torch
from PIL import Image, ImageEnhance
from torchvision.datasets import ImageFolder
import torchvision.transforms as transforms
from torch.utils.data.dataset import Dataset
import os
def get_annotations_map(VAL_PATH):
valAnnotationsPath = VAL_PATH + '/val_annotations.txt'
valAnnotationsFile = open(valAnnotationsPath, 'r')
valAnnotationsContents = valAnnotationsFile.read()
valAnnotations = {}
for line in valAnnotationsContents.splitlines():
pieces = line.strip().split()
valAnnotations[pieces[0]] = pieces[1]
return valAnnotations
def get_image_folders(TRAIN_DIR):
"""
Build an input pipeline for training and evaluation.
For training data it does data augmentation.
"""
enhancers = {
0: lambda image, f: ImageEnhance.Color(image).enhance(f),
1: lambda image, f: ImageEnhance.Contrast(image).enhance(f),
2: lambda image, f: ImageEnhance.Brightness(image).enhance(f),
3: lambda image, f: ImageEnhance.Sharpness(image).enhance(f)
}
# intensities of enhancers
factors = {
0: lambda: np.clip(np.random.normal(1.0, 0.3), 0.4, 1.6),
1: lambda: np.clip(np.random.normal(1.0, 0.15), 0.7, 1.3),
2: lambda: np.clip(np.random.normal(1.0, 0.15), 0.7, 1.3),
3: lambda: np.clip(np.random.normal(1.0, 0.3), 0.4, 1.6),
}
# randomly change color of an image
def enhance(image):
order = [0, 1, 2, 3]
np.random.shuffle(order)
# random enhancers in random order
for i in order:
f = factors[i]()
image = enhancers[i](image, f)
return image
def rotate(image):
degree = np.clip(np.random.normal(0.0, 15.0), -40.0, 40.0)
return image.rotate(degree, Image.BICUBIC)
# training data augmentation on the fly
train_transform = transforms.Compose([
transforms.Lambda(rotate),
#transforms.RandomCrop(56),
transforms.RandomHorizontalFlip(),
transforms.Lambda(enhance),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
),
])
# mean and std are taken from here:
# http://pytorch.org/docs/master/torchvision/models.html
train_folder = ImageFolder(TRAIN_DIR, train_transform)
return train_folder
def get_test_image_folders(path):
num_classes = 10
TRAIN_DIR=path+'tiny-imagenet-200/training'
VAL_DIR=path+'tiny-imagenet-200/validation'
# for validation data
val_transform = transforms.Compose([
#transforms.CenterCrop(56),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
),
])
val_annotations_map = get_annotations_map(VAL_DIR)
#val_folder = ImageFolder(VAL_DIR, val_transform)
#X_train = np.zeros([num_classes * 500, 3, 64, 64], dtype='uint8')
#y_train = np.zeros([num_classes * 500], dtype='uint8')
trainPath = TRAIN_DIR
i = 0
j = 0
annotations = {}
for sChild in os.listdir(trainPath):
sChildPath = os.path.join(os.path.join(trainPath, sChild), 'images')
annotations[sChild] = j
'''
for c in os.listdir(sChildPath):
X = np.array(Image.open(os.path.join(sChildPath, c)))
if len(np.shape(X)) == 2:
X_train[i] = np.array([X, X, X])
else:
X_train[i] = np.transpose(X, (2, 0, 1))
y_train[i] = j
i += 1
'''
j += 1
if (j >= num_classes):
break
print('loading test images...')
X_test = np.zeros([num_classes * 50, 3, 64, 64], dtype='uint8')
y_test = np.zeros([num_classes * 50], dtype='uint8')
i = 0
testPath = VAL_DIR + '/images'
for sChild in os.listdir(testPath):
if val_annotations_map[sChild] in annotations.keys():
sChildPath = os.path.join(testPath, sChild)
X = np.array(Image.open(sChildPath))
if len(np.shape(X)) == 2:
X_test[i] = np.array([X, X, X])
else:
X_test[i] = np.transpose(X, (2, 0, 1))
y_test[i] = annotations[val_annotations_map[sChild]]
i += 1
else:
pass
return DataTest(torch.from_numpy(X_test), torch.from_numpy(y_test)), y_test
class DataTest(Dataset):
def __init__(self, data_tensor, target_tensor):
assert data_tensor.size(0) == target_tensor.size(0)
print(data_tensor.type(torch.FloatTensor).shape)
self.data_tensor = data_tensor.type(torch.FloatTensor)
self.target_tensor = target_tensor.type(torch.LongTensor)
def __getitem__(self, index):
return self.data_tensor[index], self.target_tensor[index]
def __len__(self):
return self.data_tensor.size(0)
# there is no annotation in this test set , therefor we can not use it for evaluation
'''
def get_test_image_folders(TEST_DIR):
"""
Build an input pipeline for training and evaluation.
For training data it does data augmentation.
"""
# for validation data
test_transform = transforms.Compose([
#transforms.CenterCrop(56),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
),
])
# mean and std are taken from here:
# http://pytorch.org/docs/master/torchvision/models.html
test_folder = ImageFolder(TEST_DIR, test_transform)
return test_folder
'''