-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathdisjoint.py
executable file
·117 lines (83 loc) · 4.14 KB
/
disjoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import argparse
import os.path
import torch
import numpy as np
from torchvision import datasets, transforms
class Disjoint(object):
def __init__(self, args):
super(Disjoint, self).__init__()
self.upperbound = args.upperbound
self.n_tasks = args.n_tasks
self.i = args.i
self.train_file = args.train_file
self.test_file = args.test_file
self.dataset = args.dataset
if self.upperbound:
self.o_train = os.path.join(args.o, 'upperbound_disjoint_' + str(self.n_tasks) + '_train.pt')
self.o_test = os.path.join(args.o, 'upperbound_disjoint_' + str(self.n_tasks) + '_test.pt')
else:
self.o_train = os.path.join(args.o, 'disjoint_' + str(self.n_tasks) + '_train.pt')
self.o_test = os.path.join(args.o, 'disjoint_' + str(self.n_tasks) + '_test.pt')
def load_cifar10(self):
transform_train = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
dataset_train = datasets.CIFAR10(root='./Datasets', train=True, download=True, transform=transform_train)
tensor_data = torch.Tensor(len(dataset_train),3,32,32)
tensor_label = torch.LongTensor(len(dataset_train))
for i in range(len(dataset_train)):
tensor_data[i] = dataset_train[i][0]
tensor_label[i] = dataset_train[i][1]
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
dataset_test = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
tensor_test = torch.Tensor(len(dataset_test),3,32,32)
tensor_label_test = torch.LongTensor(len(dataset_test))
for i in range(len(dataset_test)):
tensor_test[i] = dataset_test[i][0]
tensor_label_test[i] = dataset_test[i][1]
#testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
return tensor_data, tensor_label, tensor_test, tensor_label_test
def formating_data(self):
tasks_tr = []
tasks_te = []
if self.dataset == 'cifar10':
x_tr, y_tr, x_te, y_te = self.load_cifar10()
x_tr = x_tr.float().view(x_tr.size(0), -1)
x_te = x_te.float().view(x_te.size(0), -1)
else:
assert os.path.isfile(os.path.join(self.i, self.train_file)), print(os.path.join(self.i, self.train_file))
assert os.path.isfile(os.path.join(self.i, self.test_file)), print(os.path.join(self.i, self.test_file))
x_tr, y_tr = torch.load(os.path.join(self.i, self.train_file))
x_te, y_te = torch.load(os.path.join(self.i, self.test_file))
x_tr = x_tr.float().view(x_tr.size(0), -1) / 255.0
x_te = x_te.float().view(x_te.size(0), -1) / 255.0
y_tr = y_tr.view(-1).long()
y_te = y_te.view(-1).long()
cpt = int(10 / self.n_tasks)
for t in range(self.n_tasks):
if self.upperbound:
c1 = 0
else:
c1 = t * cpt
c2 = (t + 1) * cpt
i_tr = ((y_tr >= c1) & (y_tr < c2)).nonzero().view(-1)
i_te = ((y_te >= c1) & (y_te < c2)).nonzero().view(-1)
tasks_tr.append([(c1, c2), x_tr[i_tr].clone(), y_tr[i_tr].clone()])
tasks_te.append([(c1, c2), x_te[i_te].clone(), y_te[i_te].clone()])
torch.save(tasks_tr, self.o_train)
torch.save(tasks_te, self.o_test)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--i', default='raw/cifar100.pt', help='input directory')
parser.add_argument('--o', default='cifar100.pt', help='output file')
parser.add_argument('--n_tasks', default=10, type=int, help='number of tasks')
parser.add_argument('--seed', default=0, type=int, help='random seed')
args = parser.parse_args()
torch.manual_seed(args.seed)
DataFormater = Disjoint()
DataFormater.formating_data(args)