Skip to content

Latest commit

 

History

History
283 lines (251 loc) · 92.8 KB

README.md

File metadata and controls

283 lines (251 loc) · 92.8 KB

Hypergraph Partitioning for VLSI: Benchmarks, Code and Leaderboard

Hypergraph Partitioning Leaderboard: Leaderboard of minimum hyperedge cut values for different testcases with multiple imbalance factors.

SpecPart: A Supervised Spectral Framework for Hypergraph Partitioning Solution Improvement
K-SpecPart: A Supervised Spectral Framework for Multi-way Hypergraph Partitioning Solution Improvement


Description

This repository supports "Data, Benchmarking and Roadmapping" goals for the balanced hypergraph min-cut partitioning problem, which is central to chip design and the divide-and-conquer paradigm. The repository is a one-stop shop" that serves the following purposes.

  1. We provide the ISPD98 benchmarks (with unit vertex weights and actual vertex weights) and Titan23 benchmarks in hMETIS format. To understand this format please refer to the hMETIS manual.
  2. We provde open source code for the Julia implementation of a recent hypergraph partitioning code, SpecPart. We also provide the implementation of CMG (Combinatorial Multigrid) preconditioner with this package.
  3. We provide open source code for the Julia implementation of K-SpecPart which is an enhancement over SpecPart, and can handle multi-way partitions. Comparison of cutsizes and runtimes are available here.
  4. We provide the best known partitioning solutions (for number of partitions 2,3, and 4) for the ISPD98 benchmarks (both with unit vertex weights and actual vertex weights) and the Titan Benchmarks.
  5. We provide a "Golden Evaluator" which processes a partition file to report the cutsize and the block balances.
  6. We provide a leaderboard of minimum hyperedge cutsize values found on the ISPD98 benchmarks and the Titan23 benchmarks. We encourage fellow researchers to update the leaderboard if better solutions are found.

We hope to see pull requests with new solutions and optimization codes, and will continue to update the repository and leaderboard as this happens.

Table of Contents


Current File/Directory Tree and Description

.
├── benchmark                                 # hypergraph files for each benchmark 
│   ├── ISPD_benchmark                        # ISPD98 VLSI Circuit Benchmark Suite with unit vertex weights
│   ├── ISPD_weight_benchmark                 # ISPD98 VLSI Circuit Benchmark Suite with actual vertex weights
│   └── Titan23_benchmark                     # Titan23 Benchmark Suite
├── golden_evaluator                          # script for evaluating partitioning solutions
│   ├── markdown_leaderboard_generator.py
│   ├── README.md
│   └── utils.py
├── K_SpecPart                                # K-SpecPart implementation
│   ├── cmg                                   # Combinatorial Multigrid Implementation
│   ├── README.md                             # Guidelines to run K-SpecPart
│   ├── rmq
├── K_specpart_solutions                      # K-SpecPart partitioning solutions
│   ├── ISPD_benchmarks
│   ├── ISPD_weight_benchmarks
│   └── Titan23_benchmarks
├── LICENSE
├── medpart_solutions                         # MedPart partitioning solutions 
│   └── 2_way
├── README.md
├── solutions_2way                            # 2-way solutions for all the benchmarks with different imbalance factors
│   ├── ISPD_benchmark_solutions              # solutions on ISPD98 testcases with unit vertex weights
│   |   ├── hMetis                            # solutions using hMETIS
│   |   |   ├── UBfactor_2                    # solutions with imbalance factor 2
│   |   |   └── UBfactor_10                   # solutions with imbalance factor 10
│   |   |   
│   |   ├── KaHyPar                           # solutions with KaHyPar
│   |   |   ├── UBfactor_2                    # solutions with imbalance factor 2
│   |   |   └── UBfactor_10                   # solutions with imbalance factor 10
│   |   |   
|   |   └── SpecPart                          # solutions with SpecPart
│   |       ├── hMetis_SpecPart               # SpecPart with initial solution generated from hMETIS
|   │       |   ├── UBfactor_2                # solutions with imbalance factor 2
│   |       |   └── UBfactor_10               # solutions with imbalance factor 10
│   |       |
│   |       └── KaHyPar_SpecPart              # SpecPart with initial solution generated from KaHyPar
|   │           ├── UBfactor_2                # solutions with imbalance factor 2
│   |           └── UBfactor_10               # solutions with imbalance factor 10
│   |       
│   ├── ISPD_weight_benchmark_solutions       # solutions on ISPD98 testcases with actual vertex weights
│   |   ├── hMetis                            # solutions with hMETIS
│   |   |   ├── UBfactor_2                    # solutions with imbalance factor 2
│   |   |   └── UBfactor_10                   # solutions with imbalance factor 10
│   |   |   
│   |   ├── KaHyPar                           # solutions with KaHyPar
│   |   |   ├── UBfactor_2                    # solutions with imbalance factor 2
│   |   |   └── UBfactor_10                   # solutions with imbalance factor 10
│   |   |   
│   |   └── SpecPart                          # solutions with SpecPart
│   |       ├── hMetis_SpecPart               # SpecPart with initial solution generated from hMETIS
|   │       |   ├── UBfactor_2                # solutions with imbalance factor 2
│   |       |   └── UBfactor_10               # solutions with imbalance factor 10
│   |       |   
│   |       └── KaHyPar_SpecPart              # SpecPart with initial solution generated from KaHyPar
|   │           ├── UBfactor_2                # solutions with imbalance factor 2
│   |           └── UBfactor_10               # solutions with imbalance factor 10
│   |       
└── └── Titan23_benchmark_solutions           # solutions on Titan23 testcases
│        ├── hMetis                           # solutions with hMETIS
│        |   ├── UBfactor_2                   # solutions with imbalance factor 2
│        |   └── UBfactor_20                  # solutions with imbalance factor 20
│        |   
│        ├── hMetis_Autotune                  # solutions with Autotuned hMETIS
│        |   └── UBfactor_10                  # solutions with imbalance factor 10
│        |   
│        ├── hMetis_Autotune_SpecPart         # SpecPart with initial solution generated from Autotuned hMETIS   
│        |   └── UBfactor_10                  # solutions with imbalance factor 10
│        |   
│        └── hMetis_SpecPart                  # SpecPart with initial solution generated from hMETIS   
│            ├── UBfactor_2                   # solutions with imbalance factor 2
│            └── UBfactor_20                  # solutions with imbalance factor 20
└── SpecPart                                  # SpecPart Implementation
│   ├── SpectralCommunityDetection
│       └── cmg                               # Combinatorial Multigrid Implementation

Installation and Run Instructions

Open Julia REPL and do the following:

include("SpectralRefinement.jl")
using Main.SpecPart
SpecPart.SpectralRefinement(hg = "Hypergraph file", pfile = "Partition file", Nparts = "Number of partitions", cycles = ζ, hyperedges_threshold = γ, ub = ε, nev = m, refine_iters = β, best_solns = δ)

ζ is the number of graph cycles (we recommend ζ=2)
γ is the threshold number of hyperedges to run ILP (we recommend γ=600)
ε is the imbalance factor (ε=1-49)
m is the number of eigenvectors (we recommend m=2)
β is the number of SpecPart iterations (we recommend β=2)
δ is the number of solutions picked from candidate solutions for overlay based clustering (we recommend δ=5)

A user guide is available here.


Leaderboards of minimum hyperedge cut values

Number of partitions 2

Current Leaderboard of minimum hyperedge cut values on ISPD98 testcases with unit vertex weights and actual vertex weights, with different imbalance factors (ε):

Testcase Statistics Cutsize
# Vertices # Hyperedges ε = 1 ε = 2 ε = 5 ε = 10
IBM01 12752 14111 203 200 180 166
IBM01_wt 12752 14111 216 215 215 215
IBM02 19601 19584 341 307 262 262
IBM02_wt 19601 19584 266 266 260 207
IBM03 23136 27401 954 951 950 950
IBM03_wt 23136 27401 775 691 680 580
IBM04 27507 31970 580 573 514 388
IBM04_wt 27507 31970 496 475 438 393
IBM05 29347 28446 1719 1706 1697 1645
IBM05_wt 29347 28446 1724 1722 1693 1647
IBM06 32498 34826 976 962 871 728
IBM06_wt 32498 34826 483 442 363 297
IBM07 45926 48117 910 878 818 764
IBM07_wt 45926 48117 737 736 717 636
IBM08 51309 50513 1140 1140 1140 1120
IBM08_wt 51309 50513 1170 1168 1120 972
IBM09 53395 60902 625 620 620 519
IBM09_wt 53395 60902 519 519 519 522
IBM10 69429 75196 1285 1253 1244 1244
IBM10_wt 69429 75196 1030 947 732 413
IBM11 70558 81454 1065 1051 951 763
IBM11_wt 70558 81454 767 766 687 656
IBM12 71076 77240 1934 1919 1871 1841
IBM12_wt 71076 77240 1976 1973 1976 1855
IBM13 84199 99666 837 831 831 655
IBM13_wt 84199 99666 892 846 846 793
IBM14 147605 152772 1842 1842 1794 1509
IBM14_wt 147605 152772 1740 1674 1501 1282
IBM15 161570 186608 2743 2730 2530 2135
IBM15_wt 161570 186608 2014 1913 1771 1444
IBM16 183484 190048 1975 1827 1695 1619
IBM16_wt 183484 190048 1656 1634 1634 1634
IBM17 185495 189581 2314 2270 2186 1989
IBM17_wt 185495 189581 2302 2289 2187 2018
IBM18 210613 201920 1521 1521 1521 1520
IBM18_wt 210613 201920 1641 1588 1520 1520

Current Leaderboard of minimum hyperedge cut values on Titan23 testcases with different imbalance factors (ε):

Statistics Cutsize
Testcase #Vertices #Hyperedges ε = 1 ε = 2 ε = 5 ε = 10 ε = 20
sparcT1_core 91976 92827 1088 977 977 977 903
neuron 92290 125305 239 239 239 239 206
stereovision 94050 127085 186 169 169 91 91
des90 111221 139557 416 372 372 372 358
SLAM_spheric 113115 142408 1061 1061 1061 1061 1061
cholesky_mc 113250 144948 343 285 281 281 285
segmentation 138295 179051 165 118 107 85 78
bitonic_mesh 192064 235328 588 584 581 543 483
dart 202354 223301 807 788 788 719 540
openCV 217453 284108 566 481 481 481 481
stap_qrd 240240 290123 398 398 380 296 295
minres 261359 320540 241 215 215 199 189
cholesky_bdti 266422 342688 1213 1156 1156 1156 947
denoise 275638 356848 457 416 416 416 224
sparcT2_core 300109 302663 1227 1227 1227 1227 1227
gsm_switch 493260 507821 1836 1827 1615 1460 1407
mes_noc 547544 577664 703 634 634 634 617
LU230 574372 669477 3362 3273 3339 3262 2677
LU_Network 635456 726999 646 525 524 524 524
sparcT1_chip2 820886 821274 1037 899 899 815 783
directrf 931275 1374742 673 574 574 378 295
bitcoin_miner 1089284 1448151 1512 1297 1232 1232 1225

Number of partitions 3

Current Leaderboard of minimum hyperedge cut values on Titan23 testcases with imbalance factor (ε) = 2:

Statistics Cutsize
Testcase #Vertices #Hyperedges ε = 2
sparcT1_core 91976 92827 1889
neuron 92290 125305 396
stereovision 94050 127085 336
des90 111221 139557 535
SLAM_spheric 113115 142408 2720
cholesky_mc 113250 144948 864
segmentation 138295 179051 453
bitonic_mesh 192064 235328 895
dart 202354 223301 1243
openCV 217453 284108 525
stap_qrd 240240 290123 497
minres 261359 320540 309
cholesky_bdti 266422 342688 1755
denoise 275638 356848 915
sparcT2_core 300109 302663 2249
gsm_switch 493260 507821 3694
mes_noc 547544 577664 1125
LU230 574372 669477 4548
LU_Network 635456 726999 882
sparcT1_chip2 820886 821274 1404
directrf 931275 1374742 762
bitcoin_miner 1089284 1448151 1917

Number of partitions 4

Current Leaderboard of minimum hyperedge cut values on Titan23 testcases with different imbalance factors (ε):

Statistics Cutsize
Testcase #Vertices #Hyperedges ε = 2
sparcT1_core 91976 92827 2942
neuron 92290 125305 431
stereovision 94050 127085 475
des90 111221 139557 747
SLAM_spheric 113115 142408 3241
cholesky_mc 113250 144948 984
segmentation 138295 179051 490
bitonic_mesh 192064 235328 1311
dart 202354 223301 1401
openCV 217453 284108 522
stap_qrd 240240 290123 674
minres 261359 320540 407
cholesky_bdti 266422 342688 1865
denoise 275638 356848 1001
sparcT2_core 300109 302663 3558
gsm_switch 493260 507821 4404
mes_noc 547544 577664 1346
LU230 574372 669477 6310
LU_Network 635456 726999 1417
sparcT1_chip2 820886 821274 1601
directrf 931275 1374742 1092
bitcoin_miner 1089284 1448151 2737

Authors

Ismail Bustany, Andrew Kahng, Yiannis Koutis, Bodhisatta Pramanik, Zhiang Wang

References

To reference SpecPart, please cite:

I. Bustany, A. B. Kahng, Y. Koutis, B. Pramanik and Z. Wang, "SpecPart: A Supervised Spectral Framework for Hypergraph Partitioning Solution Improvement", (pdf), Proc. ACM/IEEE International Conference on Computer-Aided Design, 2022.

Acknowledgments

This work was partially supported by NSF CCF-2112665, CCF-2039863, CCF-1813374, DARPA HR0011-18-0-2-0032