-
Notifications
You must be signed in to change notification settings - Fork 48
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
197 changed files
with
152,067 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
pretrained_models | ||
.DS_Store | ||
# output dir | ||
/data | ||
/datasets | ||
*.so.* | ||
*.tar.gz | ||
*.egg-info* | ||
/output | ||
instant_test_output | ||
inference_test_output | ||
|
||
|
||
*.ttf | ||
*.jpg | ||
*.png | ||
*.txt | ||
|
||
# compilation and distribution | ||
__pycache__ | ||
_ext | ||
*.pyc | ||
*.so | ||
detectron2.egg-info/ | ||
build/ | ||
dist/ | ||
|
||
# pytorch/python/numpy formats | ||
*.pth | ||
*.pkl | ||
*.npy | ||
|
||
# ipython/jupyter notebooks | ||
*.ipynb | ||
**/.ipynb_checkpoints/ | ||
|
||
# Editor temporaries | ||
*.swn | ||
*.swo | ||
*.swp | ||
*~ | ||
|
||
# Pycharm editor settings | ||
.idea | ||
|
||
# VSCode editor settings | ||
.vscode | ||
|
||
# project dirs | ||
/models |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,174 @@ | ||
OUTPUT_ROOT = "output" | ||
# if OUTPUT_DIR="auto", osp.join(cfg.OUTPUT_ROOT, osp.splitext(args.config_file)[0].split("configs/")[1]) | ||
OUTPUT_DIR = "output" | ||
|
||
EXP_NAME = "" | ||
|
||
DEBUG = False | ||
# Set seed to negative to fully randomize everything. | ||
# Set seed to positive to use a fixed seed. Note that a fixed seed does not | ||
# guarantee fully deterministic behavior. | ||
SEED = -1 | ||
# Benchmark different cudnn algorithms. | ||
# If input images have very different sizes, this option will have large overhead | ||
# for about 10k iterations. It usually hurts total time, but can benefit for certain models. | ||
# If input images have the same or similar sizes, benchmark is often helpful. | ||
CUDNN_BENCHMARK = True | ||
# The period (in terms of steps) for minibatch visualization at train time. | ||
# Set to 0 to disable. | ||
VIS_PERIOD = 0 | ||
|
||
# ----------------------------------------------------------------------------- | ||
# Input | ||
# ----------------------------------------------------------------------------- | ||
INPUT = dict( | ||
# Whether the model needs RGB, YUV, HSV etc. | ||
FORMAT="BGR", | ||
MIN_SIZE_TRAIN=(480,), | ||
MAX_SIZE_TRAIN=640, | ||
MIN_SIZE_TRAIN_SAMPLING="choice", | ||
MIN_SIZE_TEST=480, | ||
MAX_SIZE_TEST=640, | ||
WITH_DEPTH=False, | ||
AUG_DEPTH=False, | ||
# color aug | ||
COLOR_AUG_PROB=0.0, | ||
COLOR_AUG_TYPE="ROI10D", | ||
COLOR_AUG_CODE="", | ||
COLOR_AUG_SYN_ONLY=False, | ||
## bg images | ||
BG_TYPE="VOC_table", # VOC_table | coco | VOC | SUN2012 | ||
BG_IMGS_ROOT="datasets/VOCdevkit/VOC2012/", # "datasets/coco/train2017/" | ||
NUM_BG_IMGS=10000, | ||
CHANGE_BG_PROB=0.5, # prob to change bg of real image | ||
# truncation fg (randomly replace some side of fg with bg during replace_bg) | ||
TRUNCATE_FG=False, | ||
BG_KEEP_ASPECT_RATIO=True, | ||
## bbox aug | ||
DZI_TYPE="uniform", # uniform, truncnorm, none, roi10d | ||
DZI_PAD_SCALE=1.0, | ||
DZI_SCALE_RATIO=0.25, # wh scale | ||
DZI_SHIFT_RATIO=0.25, # center shift | ||
# smooth xyz map by median filter | ||
SMOOTH_XYZ=False, | ||
) | ||
|
||
# ----------------------------------------------------------------------------- | ||
# Datasets | ||
# ------------------------------------------------------------------------- | ||
DATASETS = dict( | ||
TRAIN=(), | ||
TRAIN2=(), # the second training dataset, useful for data balancing | ||
TRAIN2_RATIO=0.0, | ||
# List of the pre-computed proposal files for training, which must be consistent | ||
# with datasets listed in DATASETS.TRAIN. | ||
PROPOSAL_FILES_TRAIN=(), | ||
# Number of top scoring precomputed proposals to keep for training | ||
PRECOMPUTED_PROPOSAL_TOPK_TRAIN=2000, | ||
TEST=(), | ||
PROPOSAL_FILES_TEST=(), | ||
# Number of top scoring precomputed proposals to keep for test | ||
PRECOMPUTED_PROPOSAL_TOPK_TEST=1000, | ||
DET_FILES_TEST=(), | ||
DET_TOPK_PER_OBJ=1, | ||
DET_THR=0.0, # filter detections | ||
# NOTE: override if symmetric objects are different, used for custom evaluator | ||
# SYM_OBJS=["024_bowl", "036_wood_block", "051_large_clamp", "052_extra_large_clamp", "061_foam_brick"], # ycbv | ||
# SYM_OBJS=["002_master_chef_can", "024_bowl", "025_mug", "036_wood_block", "040_large_marker", "051_large_clamp", | ||
# "052_extra_large_clamp", "061_foam_brick"], # ycbv_bop | ||
SYM_OBJS=["bowl", "cup", "eggbox", "glue"], | ||
) | ||
|
||
# ----------------------------------------------------------------------------- | ||
# DataLoader | ||
# ----------------------------------------------------------------------------- | ||
DATALOADER = dict( | ||
# Number of data loading threads | ||
NUM_WORKERS=4, | ||
ASPECT_RATIO_GROUPING=False, # default True in detectron2 | ||
# Default sampler for dataloader | ||
# Options: TrainingSampler, RepeatFactorTrainingSampler | ||
SAMPLER_TRAIN="TrainingSampler", | ||
# Repeat threshold for RepeatFactorTrainingSampler | ||
REPEAT_THRESHOLD=0.0, | ||
# If True, the dataloader will filter out images that have no associated | ||
# annotations at train time. | ||
FILTER_EMPTY_ANNOTATIONS=True, | ||
# NOTE: set to False if you want to see the image anyways | ||
FILTER_EMPTY_DETS=True, # filter images with empty detections | ||
# filter out instances with visib_fract <= visib_thr at train time | ||
FILTER_VISIB_THR=0.0, | ||
) | ||
|
||
# ---------------------------------------------------------------------------- # | ||
# Solver | ||
# ---------------------------------------------------------------------------- # | ||
SOLVER = dict( | ||
IMS_PER_BATCH=6, | ||
TOTAL_EPOCHS=160, | ||
# NOTE: use string code to get cfg dict like mmdet | ||
# will ignore OPTIMIZER_NAME, BASE_LR, MOMENTUM, WEIGHT_DECAY | ||
OPTIMIZER_CFG=dict(type="RMSprop", lr=1e-4, momentum=0.0, weight_decay=0), | ||
####### | ||
GAMMA=0.1, | ||
BIAS_LR_FACTOR=1.0, | ||
LR_SCHEDULER_NAME="WarmupMultiStepLR", # WarmupMultiStepLR | flat_and_anneal | ||
WARMUP_METHOD="linear", | ||
WARMUP_FACTOR=1.0 / 1000, | ||
WARMUP_ITERS=1000, | ||
ANNEAL_METHOD="step", | ||
ANNEAL_POINT=0.75, | ||
POLY_POWER=0.9, # poly power | ||
REL_STEPS=(0.5, 0.75), | ||
# checkpoint | ||
CHECKPOINT_PERIOD=5, | ||
CHECKPOINT_BY_EPOCH=True, | ||
MAX_TO_KEEP=5, | ||
# Enable automatic mixed precision for training | ||
# Note that this does not change model's inference behavior. | ||
# To use AMP in inference, run inference under autocast() | ||
AMP=dict(ENABLED=False), | ||
) | ||
|
||
# ---------------------------------------------------------------------------- # | ||
# Specific train options | ||
# ---------------------------------------------------------------------------- # | ||
TRAIN = dict( | ||
PRINT_FREQ=100, | ||
VERBOSE=False, | ||
VIS=False, | ||
# vis imgs in tensorboard | ||
VIS_IMG=False, | ||
) | ||
# ---------------------------------------------------------------------------- # | ||
# Specific val options | ||
# ---------------------------------------------------------------------------- # | ||
VAL = dict( | ||
DATASET_NAME="lm", | ||
SCRIPT_PATH="lib/pysixd/scripts/eval_pose_results_more.py", | ||
RESULTS_PATH="", | ||
TARGETS_FILENAME="lm_test_targets_bb8.json", | ||
ERROR_TYPES="ad,rete,re,te,proj", | ||
RENDERER_TYPE="cpp", # cpp, python, egl, aae | ||
SPLIT="test", | ||
SPLIT_TYPE="bb8", | ||
N_TOP=1, # SISO: 1, VIVO: -1 (for LINEMOD, 1/-1 are the same) | ||
EVAL_CACHED=False, # if the predicted poses have been saved | ||
SCORE_ONLY=False, # if the errors have been calculated | ||
EVAL_PRINT_ONLY=False, # if the scores/recalls have been saved | ||
EVAL_PRECISION=False, # use precision or recall | ||
USE_BOP=False, # whether to use bop toolkit | ||
) | ||
|
||
# ---------------------------------------------------------------------------- # | ||
# Specific test options | ||
# ---------------------------------------------------------------------------- # | ||
TEST = dict( | ||
EVAL_PERIOD=0, | ||
VIS=False, | ||
TEST_BBOX_TYPE="gt", # gt | est | ||
# USE_PNP = False, # use pnp or direct prediction | ||
# PNP_TYPE = "ransac_pnp", | ||
PRECISE_BN=dict(ENABLED=False, NUM_ITER=200), | ||
AMP_TEST=False, | ||
) |
Oops, something went wrong.