-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
449 lines (379 loc) · 16.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import os
import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, ConcatDataset
from segment_anything.build_sam import sam_model_registry
from monai.metrics import DiceMetric
import matplotlib.pyplot as plt
import random
from torch.utils.tensorboard import SummaryWriter
from dataset import build_dataset
from config import get_args_parser, setup_output_dirs
from utils import generate_click_prompt, random_box, l2_regularisation, elbo, iou, generalized_energy_distance
import datetime
import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="openpyxl")
def get_optimizer(args, model):
if args.opt == 'adam':
optimizer = optim.Adam(model.parameters(), lr=args.lr)
elif args.opt == 'adamw':
optimizer = optim.AdamW(
model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay
)
return optimizer
def get_scheduler(args, optimizer):
if args.scheduler == 'step':
scheduler = optim.lr_scheduler.StepLR(
optimizer,
step_size=args.step_size,
gamma=args.gamma
)
elif args.scheduler == 'cosine':
scheduler = optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=args.epochs,
eta_min=0
)
return scheduler
def prepare_prompts(images, labels, args, devices):
"""
Prepare prompts based on configuration
"""
batched_input = []
point_prompt = None
box_prompt = None
if args.prompt_type in ['point', 'both']:
point_prompt = generate_click_prompt(
labels,
num_points=args.num_points,
pt_label=args.point_label
)
if args.prompt_type in ['box', 'both']:
box_prompt = random_box(
labels,
box_num=args.num_boxes,
std=args.box_noise_std,
max_pixel=args.box_noise_max
).to(devices)
if args.dataset == 'refuge':
original_size = (args.img_size, args.img_size)
elif args.dataset == 'lidc':
original_size = (128, 128)
for i in range(images.size(0)):
input_dict = {
"image": images[i],
"masks": labels[i],
"original_size": original_size,
}
if point_prompt is not None:
input_dict["point_coords"] = point_prompt['point_coords']
input_dict["point_labels"] = point_prompt['point_labels']
if box_prompt is not None:
input_dict["boxes"] = box_prompt
batched_input.append(input_dict)
return batched_input
def train_one_epoch(model, train_loader, optimizer, scheduler, args, device, epoch, writer):
model.train()
total_loss = 0
total_reg_loss = 0
total_rec_loss = 0
train_step = 0
for batch_idx, batch in enumerate(train_loader):
images = batch['image'].to(device)
if args.dataset == 'refuge':
labels = batch['random_cup_label'].to(device)
elif args.dataset == 'lidc':
labels = batch['random_label'].to(device)
batched_input = prepare_prompts(images, labels, args, device)
outputs_tuple = model(
batched_input=batched_input,
multimask_output=False
)
outputs_list = outputs_tuple[0]
masks = outputs_list[0]['masks'].float()
reg_loss = (l2_regularisation(model.Probabilistic_model.prior) +
l2_regularisation(model.Probabilistic_model.posterior))
loss = elbo(masks, labels, outputs_tuple[1], beta=args.beta) + args.reg_weight * reg_loss
loss = loss.to(device)
optimizer.zero_grad()
loss.backward()
optimizer.step()
reconstruction_loss = elbo(masks, labels, outputs_tuple[1], beta=args.beta)
total_loss += loss.item()
total_reg_loss += reg_loss.item()
total_rec_loss += reconstruction_loss.item()
if batch_idx % 10 == 0:
step = epoch * len(train_loader) + batch_idx
writer.add_scalar('Train/BatchLoss', loss.item(), step)
writer.add_scalar('Train/RegLoss', reg_loss.item(), step)
writer.add_scalar('Train/ReconstructionLoss', reconstruction_loss.item(), step)
train_step += 1
print(f"\rStep: {train_step}/{len(train_loader)}, Loss: {loss.item():.4f}", end='')
avg_loss = total_loss / len(train_loader)
avg_reg_loss = total_reg_loss / len(train_loader)
avg_rec_loss = total_rec_loss / len(train_loader)
scheduler.step()
writer.add_scalar('Train/EpochLoss', avg_loss, epoch)
writer.add_scalar('Train/EpochRegLoss', avg_reg_loss, epoch)
writer.add_scalar('Train/EpochReconLoss', avg_rec_loss, epoch)
return avg_loss
@torch.no_grad()
def validate(model, val_loader, args, device, epoch, writer):
model.eval()
total_dice = 0
total_loss = 0
total_iou = 0
dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False, ignore_empty=False)
for batch in val_loader:
images = batch['image'].to(device)
if args.mode == 'train':
if args.dataset == 'refuge':
labels = batch['random_cup_label'].to(device)
elif args.dataset == 'lidc':
labels = batch['random_label'].to(device)
elif args.mode == 'val':
if args.dataset == 'refuge':
labels = batch['majorityvote_cup_label'].to(device)
elif args.dataset == 'lidc':
labels = batch['majorityvote_label'].to(device)
batched_input = prepare_prompts(images, labels, args, device)
outputs_tuple = model(batched_input=batched_input, multimask_output=False)
outputs_list = outputs_tuple[0]
masks = outputs_list[0]['masks'].float()
loss = elbo(masks, labels, outputs_tuple[1], beta=args.beta)
total_loss += loss.item()
masks = torch.sigmoid(masks)
binary_masks = (masks > 0.5).float()
# Calculate Dice score
dice_score = dice_metric(binary_masks, labels).to(device)
total_dice += dice_score[0].item()
# Calculate IoU
intersection = torch.logical_and(binary_masks.bool(), labels.bool())
union = torch.logical_or(binary_masks.bool(), labels.bool())
intersection_sum = intersection.sum(dim=(1, 2, 3))
union_sum = union.sum(dim=(1, 2, 3))
iou_per_image = (intersection_sum + 1e-8) / (union_sum + 1e-8)
mean_iou_batch = iou_per_image.mean()
total_iou += mean_iou_batch.item()
if writer is not None and epoch % 5 == 0:
writer.add_images('Val/Images', images[:4], epoch)
writer.add_images('Val/TrueMasks', labels[:4], epoch)
writer.add_images('Val/PredMasks', binary_masks[:4], epoch)
avg_dice = total_dice / len(val_loader)
avg_loss = total_loss / len(val_loader)
avg_iou = total_iou / len(val_loader)
if writer is not None:
writer.add_scalar('Val/DiceScore', avg_dice, epoch)
writer.add_scalar('Val/Loss', avg_loss, epoch)
writer.add_scalar('Val/IoU', avg_iou, epoch)
return avg_loss, avg_dice, avg_iou
@torch.no_grad()
def validate_ged(model, val_loader, args, device, epoch, writer, num_samples=10):
model.eval()
total_ged = 0
for batch_idx, batch in enumerate(val_loader):
images = batch['image'].to(device)
all_masks = batch['all_masks'].to(device)
batch_predictions_list = []
for _ in range(num_samples):
if args.dataset == 'refuge':
labels = batch['majorityvote_cup_label'].to(device)
elif args.dataset == 'lidc':
labels = batch['majorityvote_label'].to(device)
batched_input = prepare_prompts(images, labels, args, device)
outputs_tuple = model(batched_input=batched_input, multimask_output=False)
masks = torch.sigmoid(outputs_tuple[0][0]['masks'])
batch_predictions_list.append(masks) # shape: (B,1,H,W)
# (num_samples, B, 1, H, W)
preds_stacked = torch.stack(batch_predictions_list, dim=0)
preds_stacked = preds_stacked.permute(1, 0, 2, 3, 4).squeeze(2)
batch_ged = generalized_energy_distance(
labels=all_masks,
preds=preds_stacked,
thresh=0.5,
num_classes=2
)
total_ged += batch_ged
avg_ged = total_ged / len(val_loader)
if writer is not None:
writer.add_scalar('Val/GED_Samples', avg_ged, epoch)
return avg_ged
def main(args):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
output_dirs = setup_output_dirs(args)
exp_dir = output_dirs['exp_dir']
ckpt_dir = output_dirs['ckpt_dir']
log_dir = output_dirs['log_dir']
writer = SummaryWriter(log_dir=log_dir)
print(f"\nExperiment directory: {exp_dir}")
print(f"Checkpoints will be saved to: {ckpt_dir}")
print(f"Tensorboard logs will be saved to: {log_dir}")
# Save configuration
config_path = os.path.join(exp_dir, 'config.txt')
with open(config_path, 'w') as f:
for arg in vars(args):
f.write(f'{arg}: {getattr(args, arg)}\n')
# Log hyperparameters
writer.add_text('Hyperparameters/Dataset', args.dataset)
writer.add_text('Hyperparameters/PromptType', args.prompt_type)
writer.add_text('Hyperparameters/ModelType', args.model_type)
writer.add_text('Hyperparameters/BatchSize', str(args.batch_size))
writer.add_text('Hyperparameters/LearningRate', str(args.lr))
writer.add_text('Hyperparameters/Optimizer', args.opt)
writer.add_text('Hyperparameters/Scheduler', args.scheduler)
# Build datasets and dataloaders
train_dataset, val_dataset, test_dataset = build_dataset(args)
if args.mode == 'train':
if args.dataset == 'refuge':
train_dataset = ConcatDataset([train_dataset, val_dataset])
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True,
pin_memory=args.pin_memory
)
test_loader = DataLoader(
test_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=False,
pin_memory=args.pin_memory
)
elif args.dataset == 'lidc':
train_dataset = train_dataset
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True,
drop_last=True,
pin_memory=args.pin_memory
)
test_loader = DataLoader(
test_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=False,
drop_last=True,
pin_memory=args.pin_memory
)
# Build model
model = sam_model_registry[args.model_type](checkpoint=args.checkpoint, args=args)
model = model.to(device)
# Freeze parameters except adapters
for name, param in model.named_parameters():
if 'image_encoder.adapters' in name:
param.requires_grad = True
elif 'sample_reconstruct' in name:
param.requires_grad = True
elif 'Probabilistic_model' in name:
param.requires_grad = True
elif 'condition' in name:
param.requires_grad = True
else:
param.requires_grad = False
# Setup training
optimizer = get_optimizer(args, model)
scheduler = get_scheduler(args, optimizer)
best_loss = 0.7
no_improve = 0
# Training loop
for epoch in range(args.epochs):
print(f"\nEpoch {epoch+1}/{args.epochs}")
# Train
train_loss = train_one_epoch(model, train_loader, optimizer, scheduler, args, device, epoch, writer)
# Validate
val_loss, _, _ = validate(model, test_loader, args, device, epoch, writer)
# Log learning rate
writer.add_scalar('Train/LearningRate', scheduler.get_last_lr()[0], epoch)
print(f"\nEpoch {epoch+1} - Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}")
# Save best model
if val_loss < best_loss:
best_loss = val_loss
# Save different versions of checkpoints
checkpoints = {
'best_model.pth': {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
},
f'checkpoint_epoch_{epoch}.pth': {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
}
}
for filename, checkpoint in checkpoints.items():
save_path = os.path.join(ckpt_dir, filename)
torch.save(checkpoint, save_path)
print(f"Saved checkpoint to: {save_path}")
# Early stopping
if best_loss < 0.6 and val_loss >= best_loss:
no_improve += 1
if no_improve >= args.patience:
print(f"Early stopping triggered after {epoch+1} epochs")
break
writer.close()
else:
if args.dataset == 'refuge':
test_loader = DataLoader(
test_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=False,
pin_memory=args.pin_memory
)
elif args.dataset == 'lidc':
test_loader = DataLoader(
test_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=False,
drop_last=True,
pin_memory=args.pin_memory
)
# Load model
model = sam_model_registry[args.model_type](checkpoint=args.checkpoint, args=args)
if args.resume:
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['model_state_dict'])
print(f"Loaded checkpoint from: {args.resume}")
# checkpoint = '/UA-SAM/LIDC_UA-SAM_prompt.pth'
# model = sam_model_registry[args.model_type](checkpoint=checkpoint, args=args)
model = model.to(device)
model.eval()
# Run validation
final_dice = 0
final_iou = 0
final_ged = 0
num_runs = 10
print("Running validation...")
for i in range(num_runs):
_, val_dice, val_iou = validate(model, test_loader, args, device, i, writer)
val_ged = validate_ged(model, test_loader, args, device, i, writer, num_samples=16)
print(f"Run {i+1}/{num_runs}")
print(f" - Dice Score: {val_dice:.4f}")
print(f" - IoU Score: {val_iou:.4f}")
print(f" - GED Score: {val_ged:.4f}")
final_dice += val_dice
final_iou += val_iou
final_ged += val_ged
# Calculate final averages
final_dice = final_dice / num_runs
final_iou = final_iou / num_runs
final_ged = final_ged / num_runs
print("\nFinal Results:")
print(f"Average Dice Score: {final_dice:.4f}")
print(f"Average IoU Score: {final_iou:.4f}")
print(f"Average GED Score: {final_ged:.4f}")
if __name__ == "__main__":
args = get_args_parser().parse_args()
main(args)