-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupload_model.py
42 lines (30 loc) · 952 Bytes
/
upload_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import argparse
from transformers import LlamaTokenizerFast
from transformers import LlamaForCausalLM
def parse_args():
parser = argparse.ArgumentParser(
description="Script for uploading model to Hugging Face",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"model",
type=str,
help="Path to model directory",
)
parser.add_argument(
"target",
type=str,
help="Uploading target on Hugging Face",
)
args = parser.parse_args()
return args
def main(args):
print(f"Model name: {args.model}")
print(f"Target name: {args.target}")
model = LlamaForCausalLM.from_pretrained(args.model)
tokenizer = LlamaTokenizerFast.from_pretrained(args.model)
model.push_to_hub(args.target)
tokenizer.push_to_hub(args.target)
print("Success to upload model")
if __name__ == "__main__":
main(parse_args())