-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_Old.py
88 lines (66 loc) · 2.76 KB
/
main_Old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import torch
from model import ResNet50
from Core.Config import datas_path
from Core.utils import get_policy
from trainer import BackboneTrainer
from Core.utils import get_optimizer
from Core.Layers import LabelSmoothing
from Core.Dataset import SubImageFolder
from Core.Config import ResNet_50_old_Config
from Core.Layers import backbone_to_torchscript
device = torch.device('cuda') if torch.cuda.is_available() else 'cpu'
model = ResNet50(ResNet_50_old_Config.model_num_classes,
ResNet_50_old_Config.embedding_dim,
ResNet_50_old_Config.last_nonlin)
optimizer = get_optimizer(model,
ResNet_50_old_Config.optimizer_algorithm,
ResNet_50_old_Config.optimizer_lr,
ResNet_50_old_Config.weight_decay,
ResNet_50_old_Config.momentum,
ResNet_50_old_Config.no_bn_decay,
ResNet_50_old_Config.nesterov)
lr_policy = get_policy(optimizer)
criterion = LabelSmoothing(ResNet_50_old_Config.label_smoothing)
data = SubImageFolder('cifar100',
batch_size = ResNet_50_old_Config.batch_size,
data_root = datas_path,
num_workers=ResNet_50_old_Config.num_workers,
num_classes=ResNet_50_old_Config.dataset_num_classes)
def main(model, model_path, data, criterion, optimizer, lr_policy, epochs) :
if torch.cuda.is_available():
model = torch.nn.DataParallel(model)
model.to(device)
trainer = BackboneTrainer()
# Training loop
for epoch in range(epochs):
lr_policy(epoch)
train_acc1, train_acc5, train_loss = trainer.train(
train_loader=data.train_loader,
model=model,
criterion=criterion,
optimizer=optimizer,
device=device,
)
print(
"Train: epoch = {}, Loss = {}, Top 1 = {}, Top 5 = {}".format(
epoch, train_loss, train_acc1, train_acc5
))
test_acc1, test_acc5, test_loss = trainer.validate(
val_loader=data.val_loader,
model=model,
criterion=criterion,
device=device,
)
print(
"Test: epoch = {}, Loss = {}, Top 1 = {}, Top 5 = {}".format(
epoch, test_loss, test_acc1, test_acc5
))
backbone_to_torchscript(model, model_path)
if __name__ == "__main__" :
main(model,
data = data,
model_path=ResNet_50_old_Config.output_model_path,
criterion=criterion,
optimizer=optimizer,
lr_policy=lr_policy,
epochs=ResNet_50_old_Config.epochs)