-
Notifications
You must be signed in to change notification settings - Fork 2
/
Losses.py
198 lines (161 loc) · 7.34 KB
/
Losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
'''
TRAINING OBJECTIVES
To train ECGAN for face inpainting we combine discriminator, adversarial, and reconstruction losses.
'''
#Reconstruction Loss
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from math import exp
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def _ssim(img1, img2, window, window_size, channel, size_average = True):
mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel)
mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1*mu2
sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq
sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq
sigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2
C1 = 0.01**2
C2 = 0.03**2
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
class SSIM(torch.nn.Module):
def __init__(self, window_size = 11, size_average = True):
super(SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = 1
self.window = create_window(window_size, self.channel)
def forward(self, img1, img2):
###
img1 = (img1+1)/2
img2 = (img2+1)/2
###
(_, channel, _, _) = img1.size()
if channel == self.channel and self.window.data.type() == img1.data.type():
window = self.window
else:
window = create_window(self.window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
self.window = window
self.channel = channel
return _ssim(img1, img2, window, self.window_size, channel, self.size_average)
def recon_loss(gt,fake,recon_criterion):
ssim = SSIM()
ssim_loss = ssim(gt,fake)
l1_loss = recon_criterion(gt,fake)
return l1_loss,ssim_loss
#Perceptual Loss
from torchvision.models import vgg19
class PerceptualNet(nn.Module):
def __init__(self, name = "vgg19", resize=True):
super(PerceptualNet, self).__init__()
blocks = []
blocks.append(vgg19(pretrained=True).features[:4].eval())
blocks.append(vgg19(pretrained=True).features[4:9].eval())
blocks.append(vgg19(pretrained=True).features[9:16].eval())
blocks.append(vgg19(pretrained=True).features[16:23].eval())
for bl in blocks:
for p in bl:
p.requires_grad = False
self.blocks = torch.nn.ModuleList(blocks).to(device)
self.transform = torch.nn.functional.interpolate
self.mean = torch.nn.Parameter(torch.tensor([0.485, 0.456, 0.406]).view(1,3,1,1)).to(device)
self.std = torch.nn.Parameter(torch.tensor([0.229, 0.224, 0.225]).view(1,3,1,1)).to(device)
self.resize = resize
def forward(self, inputs, targets):
if inputs.shape[1] != 3:
inputs = inputs.repeat(1, 3, 1, 1)
targets = targets.repeat(1, 3, 1, 1)
inputs = (inputs+1)/2
targets = (targets+1)/2
if self.resize:
inputs = self.transform(inputs, mode='bilinear', size=(224, 224), align_corners=False)
targets = self.transform(targets, mode='bilinear', size=(224, 224), align_corners=False)
loss = 0.0
x = inputs
y = targets
for block in self.blocks:
x = block(x)
y = block(y)
loss += torch.nn.functional.l1_loss(x, y)
return loss
def percep_loss(gt,fake):
percep_net = PerceptualNet()
return percep_net(gt,fake)
#Disc Loss
def discwhole_loss_func(disc_whole,gt,mask,binary,label,fake,adv_criterion,lambda_Dwhole):
input_imgs = torch.cat((mask,binary),1)
fake_pred = disc_whole(fake.detach(),input_imgs, label)
gt_pred = disc_whole(gt,input_imgs, label)
fake_loss = adv_criterion(fake_pred,torch.zeros_like(fake_pred))
gt_loss = adv_criterion(gt_pred,torch.ones_like(gt_pred))
return lambda_Dwhole * (fake_loss+gt_loss)/2
def discmask_loss_func(disc_mask, gt,fake,mask,binary, label, adv_criterion, lambda_Dmask):
nor_mask = normalize(mask)
nor_binary = normalize(binary)
nor_fake = normalize(fake)
oofs = torch.mul(nor_mask,1-nor_binary)
oops = torch.mul(nor_fake,nor_binary)
ooo = anti_normalize(oofs+oops)
input_imgs = torch.cat((mask,binary),1)
fake_pred = disc_mask(ooo.detach(),input_imgs, label)
gt_pred = disc_mask(gt,input_imgs, label)
fake_loss = adv_criterion(fake_pred,torch.zeros_like(fake_pred))
gt_loss = adv_criterion(gt_pred,torch.ones_like(gt_pred))
return lambda_Dmask * (fake_loss+gt_loss)/2
#Gen Loss
def gen_adv_loss(gen,disc, gt,mask,binary, label, adv_criterion):
input_imgs = torch.cat((mask,binary),1)
fake = gen(input_imgs, label)
fake_pred = disc(fake,input_imgs, label)
adv_loss = adv_criterion(fake_pred,torch.ones_like(fake_pred))
return adv_loss,fake
def generator_loss(cur_step,gen,disc_whole,disc_mask, gt,mask,binary, label,
adv_criterion,recon_criterion,
lambda_recon,lambda_adv_whole,lambda_adv_mask):
if cur_step<3516*6:
adver_loss_whole,fake = gen_adv_loss(gen,disc_whole,gt,mask,binary,label,adv_criterion)
l1_loss,ssim_loss = recon_loss(gt,fake,recon_criterion)
reconstruction_loss = l1_loss*0.5 + (1-ssim_loss)*0.5
perceptual_loss = percep_loss(gt,fake)
gen_loss = lambda_recon*(reconstruction_loss+perceptual_loss)+lambda_adv_whole*adver_loss_whole
else:
adver_loss_whole,fake = gen_adv_loss(gen,disc_whole,gt,mask,binary,label, adv_criterion)
adver_loss_mask,fake = gen_adv_loss(gen,disc_mask,gt,mask,binary,label, adv_criterion)
l1_loss,ssim_loss = recon_loss(gt,fake,recon_criterion)
reconstruction_loss = l1_loss*0.5 + (1-ssim_loss)*0.5
perceptual_loss = percep_loss(gt,fake)
gen_loss = lambda_recon*(reconstruction_loss+perceptual_loss)+lambda_adv_whole*adver_loss_whole+lambda_adv_mask*adver_loss_mask
return gen_loss,fake,l1_loss,ssim_loss,perceptual_loss
#FID
from torchvision.models import inception_v3
import scipy.linalg
import numpy as np
inception_model = inception_v3(pretrained=True)
inception_model.to(device)
inception_model = inception_model.eval() # Evaluation mode
inception_model.fc = torch.nn.Identity()
def matrix_sqrt(x):
y = x.cpu().detach().numpy()
y = scipy.linalg.sqrtm(y)
return torch.Tensor(y.real,device=x.device)
def frechet_distance(mu_x,mu_y,sigma_x,sigma_y):
return torch.norm(mu_x-mu_y)**2 + torch.trace(sigma_x+sigma_y-2*matrix_sqrt(sigma_x@sigma_y))
def get_covariance(features):
return torch.Tensor(np.cov(features.detach().numpy(),rowvar=False))