Skip to content

NeuroFlex: Feasibility of EEG-Based Motor Imagery Control of a Soft Glove for Hand Rehabilitation

Notifications You must be signed in to change notification settings

SoroushZare/NeuroFlex

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 

Repository files navigation

NeuroFlex

Feasibility of EEG-Based Motor Imagery Control of a Soft Glove for Hand Rehabilitation

Introduction

NeuroFlex is a motion-intent-controlled soft robotic glove developed for hand rehabilitation. Utilizing EEG-based motor imagery (MI) signals and a transformer-based deep learning architecture, NeuroFlex decodes motion intent from EEG data to control a pneumatic glove. This system enables effective rehabilitation through non-invasive brain-computer interaction.

Features

EEG-based Control: Uses MI EEG signals to control the glove for hand movements.

Transformer-Based Model: Implements a self-attention mechanism for accurate EEG signal classification.

Soft Robotic Glove: Lightweight and flexible glove designed with pneumatic actuators for natural movements.

High Accuracy: Achieves up to 85.3% accuracy in classifying MI tasks.

Releases

No releases published

Packages

No packages published