-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
192 lines (162 loc) · 7.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import sys
import argparse
import sys
from datetime import datetime
from torch.backends import cudnn
from data.loaders import get_data_loader
from data.preprocessing import AudioProcessor
from gans import ProgressiveGANTrainer
from utils.config import update_parser_with_config, \
get_config_override_from_parser, update_config
from utils.utils import *
import ipdb
# get rid of the librosa warning when loading mp3s
if not sys.warnoptions:
import warnings
warnings.simplefilter("ignore") # Change the filter in this process
os.environ["PYTHONWARNINGS"] = "ignore" # Also affect subprocesses
from datetime import datetime
from visualization import getVisualizer
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Deep-Audio-GenLib training script')
parser.add_argument('architecture', type=str, default='PGAN',
help='Name of the architecture to launch, available models are\
PGAN and PPGAN. To get all possible option for a model\
please run train.py $MODEL_NAME')
parser.add_argument('-n', '--name', help="Model's name",
type=str, dest="name",
default=f"default_{datetime.now().strftime('%y_%m_%d')}")
parser.add_argument('-d', '--dataset',type=str, dest="dataset", default=f"nsynth",
help="Dataset name. Availabel: nsynth, mtg-drums, csl-drums, youtube-pianos")
parser.add_argument('-o', '--output-path', help='Output directory',
type=str, dest="output_path", default='output_networks')
parser.add_argument('-c', '--config', help="Path to configuration file",
type=str, dest="config")
parser.add_argument('-s', '--save_iter', help="If it applies, frequence at\
which a checkpoint should be saved. In the case of a\
evaluation test, iteration to work on.",
type=int, dest="save_i", default=1000)
parser.add_argument('-e', '--eval_iter', help="If it applies, frequence at\
which evaluation is run",
type=int, dest="eval_i", default=-1)
parser.add_argument('-l', '--loss_iter', help="If it applies, frequence at\
which a checkpoint should be saved. In the case of a\
evaluation test, iteration to work on.",
type=int, dest="loss_i", default=5000)
parser.add_argument('--scale', dest="scale", default=-1, type=int,
help="If checkpoints found, start at scale")
parser.add_argument('--iter', dest='iter', default=-1, type=int,
help="If chekpoints found, iteration at which to continue")
parser.add_argument('-v', '--partitionValue', help="Partition's value",
type=str, dest="partition_value")
parser.add_argument('--seed', dest='seed', action='store_true', help="Partition's value")
parser.add_argument('--n_samples', type=int, default=10, help="Partition's value")
parser.add_argument('--restart', action='store_true',
help=' If a checkpoint is detected, do not try to load it')
parser.add_argument('--no-visdom', action='store_true', dest='no_visdom',
help='Deactivate visdom visualization')
parser.add_argument('--retrain', action='store_true', dest='retrain',
help='Deactivate visdom visualization')
parser.add_argument('--finetune', action='store_true', dest='finetune',
help='Deactivate visdom visualization')
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, rlimit)
#torch.autograd.set_detect_anomaly(True)
cudnn.benchmark = True
# Parse command line args
args, unknown = parser.parse_known_args()
# Initialize random seed
init_seed(args.seed)
# Build the output directory if necessary
checkexists_mkdir(args.output_path)
# Add overrides to the parser: changes to the model configuration can be
# done via the command line
parser = update_parser_with_config(parser, ProgressiveGANTrainer._defaultConfig)
kwargs = vars(parser.parse_args())
config_override = get_config_override_from_parser(kwargs, ProgressiveGANTrainer._defaultConfig)
if kwargs['overrides']:
parser.print_help()
sys.exit()
# configuration file path
config = load_config_file(args.config)
config['arch'] = args.architecture
# Retrieve the model we want to launch
print(f"Loading traines for {args.architecture}")
trainerModule = get_trainer(args.architecture)
# model config
model_config = config["model_config"]
for item, val in config_override.items():
model_config[item] = val
# # data config
# for item, val in config_override.items():
# data_config[item] = val
exp_name = config.get("name", "default")
checkpoint_dir = config["output_path"]
checkpoint_dir = mkdir_in_path(checkpoint_dir, exp_name)
# config["output_shapetput_path"] = checkpoint_dir
# configure processor
print("Data manager configuration")
transform_config = config['transform_config']
audio_processor = AudioProcessor(**transform_config)
# configure loader
loader_config = config['loader_config']
dbname = loader_config.get('dbname', args.dataset)
loader_module = get_data_loader(dbname)
loader = loader_module(name=dbname + '_' + transform_config['transform'],
output_path=checkpoint_dir,
preprocessing=audio_processor,
**loader_config)
print(f"Loading data. Found {len(loader)} instances")
model_config['output_shape'] = audio_processor.get_output_shape()
config["model_config"] = model_config
# load checkpoint
print("Search and load last checkpoint")
checkpoint_state = getLastCheckPoint(checkpoint_dir,
exp_name,
iter=args.iter,
scale=args.scale)
# if retrain from checkpoint, create a new folder and exp_name
if args.retrain and checkpoint_state is not None:
exp_name = exp_name + '_' + args.name
checkpoint_dir = mkdir_in_path(config['output_path'], exp_name)
config["name"] = exp_name
# visualization
vis_manager = \
getVisualizer(transform_config['transform'])(
output_path=checkpoint_dir,
env=exp_name,
sampleRate=transform_config.get('sample_rate', 16000),
no_visdom=args.no_visdom)
GANTrainer = trainerModule(
model_name=exp_name,
gpu=GPU_is_available(),
loader=loader,
loss_plot_i=args.loss_i,
eval_i=args.eval_i,
checkpoint_dir=checkpoint_dir,
save_iter=args.save_i,
n_samples=args.n_samples,
config=model_config,
vis_manager=vis_manager)
# If a checkpoint is found, load it
if not args.restart and checkpoint_state is not None:
train_config, model_path, tmp_data_path = checkpoint_state
# if args.retrain:
# train_config_file = read_json(train_config)
# for k, v in config['model_config'].items():
# train_config_file[k] = v
# train_config = os.path.join(checkpoint_dir, f'{exp_name}_train_config.json')
# save_json(train_config_file, train_config)
GANTrainer.load_saved_training(
model_path,
train_config,
tmp_data_path
)
if args.finetune:
GANTrainer.model.update_config(model_config)
update_config(GANTrainer.modelConfig, model_config)
# ipdb.set_trace()
# save config file
save_json(config, os.path.join(checkpoint_dir, f'{exp_name}_config.json'))
GANTrainer.train()