forked from scrssys/baidu-remote-sensing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGeResult.py
53 lines (42 loc) · 1.88 KB
/
GeResult.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import torch.nn as nn
import torch.utils.data as data
import torch.backends.cudnn as cudnn
from Dataloader.MultiModal_BDXJTU2019 import BDXJTU2019_test
from basenet.ResNeXt101_64x4d import ResNeXt101_64x4d
from basenet.senet import se_resnet50,se_resnext101_32x4d
from basenet.octave_resnet import octave_resnet50
from basenet.nasnet import nasnetalarge
from basenet.multimodal import MultiModalNet
import os
CLASSES = ['001', '002', '003', '004', '005', '006', '007', '008', '009']
def GeResult():
# Priors
torch.set_default_tensor_type('torch.cuda.FloatTensor')
torch.cuda.set_device(0)
# Dataset
Dataset = BDXJTU2019_test(root = 'data')
Dataloader = data.DataLoader(Dataset, 1,
num_workers = 1,
shuffle = False, pin_memory = True)
# Network
cudnn.benchmark = True
#Network = pnasnet5large(6, None)
#Network = ResNeXt101_64x4d(6)
net = MultiModalNet('se_resnext50_32x4d', 'DPN26', 0.5)
net.load_state_dict(torch.load('/home/zxw/2019BaiduXJTU/weights/MultiModal_100/BDXJTU2019_SGD_20.pth'))
net.eval()
filename = 'MM_epoch20_R_TTA.txt'
f = open(filename, 'w')
for (Input_O, Input_H, visit_tensor, anos) in Dataloader:
ConfTensor_O = net.forward(Input_O.cuda(), visit_tensor.cuda())
ConfTensor_H = net.forward(Input_H.cuda(), visit_tensor.cuda())
#ConfTensor_V = net.forward(Input_V.cuda())
preds = torch.nn.functional.normalize(ConfTensor_O) + torch.nn.functional.normalize(ConfTensor_H) #+torch.nn.functional.normalize(ConfTensor_V)
_, pred = preds.data.topk(1, 1, True, True)
#f.write(anos[0] + ',' + CLASSES[4] + '\r\n')
print(anos[0][:-4] + '\t' + CLASSES[pred[0][0]] + '\n')
f.writelines(anos[0][:-4] + '\t' + CLASSES[pred[0][0]] + '\n')
f.close()
if __name__ == '__main__':
GeResult()