-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPongGPT_v1.py
208 lines (182 loc) · 6.81 KB
/
PongGPT_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# import the necessary packages
# 콜렉션 모듈에서 deque라는 데이터 처리 함수
from collections import deque
# imutils 비디오스트림 모듈 임포트
from imutils.video import VideoStream
# numpy 모듈 임포트
import numpy as np
# argparse 모듈 임포트 (파이썬 스크립트를 명령 프롬프트에서 실행할 때 명령행 인자를 파싱할 수 있게 한다)
import argparse
# OpenCV 모듈 임포트
import cv2
# imutils 모듈 임포트 (이미지 프로세싱 관련된 유용한 기능들 있다)
import imutils
# time 모듈 임포트
import time
##### CHANGABLE VARIABLES #####
CHECK_RANGE = 200
LINE1_XY = None
LINE2_XY = None
LINE1_TOGGLE = False
LINE2_TOGGLE = False
ball_isout = True
line_ison = False
FINAL_XY = None
# construct the argument parse and parse the arguments
# parser를 만든다 이름은 ap
ap = argparse.ArgumentParser()
# add_argument 메서드로 받아들일 인수를 추가해나간다
# -v 로 비디오 파일을 선택해서 재생할 수 있다.
ap.add_argument("-v", "--video", help="path to the (optional) video file")
# -b 로 최대 버퍼 사이즈를 지정할 수 있다 기본은 64
ap.add_argument("-b", "--buffer", type=int, default=64, help="max buffer size")
args = vars(ap.parse_args())
# define the lower and upper boundaries of the "Orange"
# ball in the HSV color space, then initialize the
# list of tracked points
# @@@오랜지 Hsv 색 범위 지정@@@
orangeLower = (6, 170, 100)
orangeUpper = (24, 255, 255)
pts = deque(maxlen=args["buffer"])
# if a video path was not supplied, grab the reference
# to the webcam
if not args.get("video", False):
# @@@비디오 장치 지정@@@
vs = VideoStream(src=1).start()
# otherwise, grab a reference to the video file
else:
vs = cv2.VideoCapture(args["video"])
# allow the camera or video file to warm up
time.sleep(2.0)
# keep looping
while True:
# grab the current frame
frame = vs.read()
# handle the frame from VideoCapture or VideoStream
frame = frame[1] if args.get("video", False) else frame
# if we are viewing a video and we did not grab a frame,
# then we have reached the end of the video
if frame is None:
break
# resize the frame, blur it, and convert it to the HSV
# color space
# (2705x1525)
frame = imutils.resize(frame, height=1525)
blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
# construct a mask for the color "orange", then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
mask = cv2.inRange(hsv, orangeLower, orangeUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
center = None
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# only proceed if the radius meets a minimum size
if radius > 10:
# draw the circle and centroid on the frame,
# then update the list of tracked points
cv2.circle(frame, (int(x), int(y)), int(radius), (0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
######## DETECTING ########
# line1
if (
ball_isout == True
and center[0] > (902 - CHECK_RANGE)
and center[0] < 902
):
if LINE1_TOGGLE == True:
LINE1_TOGGLE = False
else:
LINE1_TOGGLE = True
ball_isout = False
LINE1_XY = center
print("line1 detect")
print(center)
# line2
if (
ball_isout == True
and center[0] > 1802
and center[0] < (1802 + CHECK_RANGE)
):
if LINE2_TOGGLE == True:
LINE2_TOGGLE = False
else:
LINE2_TOGGLE = True
ball_isout = False
LINE2_XY = center
print("line2 detect")
print(center)
# isout detector
if (
(center[0] < (902 - CHECK_RANGE))
or (center[0] > 902 and center[0] < 1802)
or (center[0] > 1802 + CHECK_RANGE)
):
ball_isout = True
# line calculating
if LINE1_TOGGLE == True and LINE2_TOGGLE == True and line_ison == False:
FINAL_XY = (
0,
int(
LINE1_XY[1]
- (LINE1_XY[0])
* (LINE1_XY[1] - LINE2_XY[1])
/ (LINE1_XY[0] - LINE2_XY[0])
),
)
line_ison = True
print(FINAL_XY)
# update the points queue
pts.appendleft(center)
# loop over the set of tracked points
for i in range(1, len(pts)):
# if either of the tracked points are None, ignore
# them
if pts[i - 1] is None or pts[i] is None:
continue
# otherwise, compute the thickness of the line and
# draw the connecting lines
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
# center line drawing
cv2.line(frame, (1352, 0), (1352, 1525), (255, 0, 0), 5)
# line1 drawing
if LINE1_TOGGLE == True:
cv2.rectangle(frame, (902 - CHECK_RANGE, 0, CHECK_RANGE, 1525), (0, 255, 0), 5)
else:
cv2.rectangle(frame, (902 - CHECK_RANGE, 0, CHECK_RANGE, 1525), (0, 0, 255), 5)
# line2 drawing
if LINE2_TOGGLE == True:
cv2.rectangle(frame, (1802, 0, CHECK_RANGE, 1525), (0, 255, 0), 5)
else:
cv2.rectangle(frame, (1802, 0, CHECK_RANGE, 1525), (0, 0, 255), 5)
# predict line drawing
if line_ison == True:
cv2.line(frame, FINAL_XY, LINE2_XY, (255, 0, 0), 5)
# show the frame to our screen
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
# if we are not using a video file, stop the camera video stream
if not args.get("video", False):
vs.stop()
# otherwise, release the camera
else:
vs.release()
# close all windows
cv2.destroyAllWindows()