-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0103mnist_QAT.py
127 lines (96 loc) · 4.29 KB
/
0103mnist_QAT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
import torch.nn.functional as F
from torchvision import transforms
import argparse
from utils.qmodel import QMnistModel
from utils.dataset import MnistData
def parseArgs():
parser = argparse.ArgumentParser()
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--test-batch-size', type=int, default=1000)
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--lr', type=float, default=1.0)
parser.add_argument('--gamma', type=float, default=0.7)
parser.add_argument('--no-cuda', action='store_true', default=False)
args = parser.parse_args()
return args
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
# if args.dry_run:
# break
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
args = parseArgs()
use_cuda = not args.no_cuda and torch.cuda.is_available()
if use_cuda: device = torch.device("cuda")
else: device = torch.device("cpu")
train_kwargs = {'batch_size':args.batch_size}
test_kwargs = {'batch_size':args.test_batch_size}
if use_cuda:
cuda_kwargs = {
'num_workers': 4,
'pin_memory': True,
'shuffle': True
}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = MnistData(root='./data/', train=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, **train_kwargs)
test_dataset = MnistData(root='./data/', train=False, transform=transform)
test_loader = torch.utils.data.DataLoader(test_dataset, **test_kwargs)
model = QMnistModel().to(device)
model.eval()
model.qconfig = torch.ao.quantization.get_default_qconfig('qnnpack')
model_fp32_fused = torch.ao.quantization.fuse_modules(model, [['conv1', 'relu1'],['conv2', 'relu2'],['fc1', 'relu3']])
model_fp32_prepared = torch.ao.quantization.prepare_qat(model_fp32_fused.train())
optimizer = optim.Adadelta(model_fp32_prepared.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs+1):
train(args, model_fp32_prepared, device, train_loader, optimizer, epoch)
test(model_fp32_prepared, device, test_loader)
scheduler.step()
model_fp32_prepared.eval()
model_fp32_prepared.to(torch.device("cpu"))
model_int8 = torch.ao.quantization.convert(model_fp32_prepared)
# test(model_int8, device, test_loader)
torch.save(model_int8.state_dict(), "weights/qmnist_lenet5_int8.pth")
# Step 2: Just-in-time compilation
model_int8.to(torch.device("cpu"))
# model.eval()
input_shape = [1,1,28,28]
input_data = torch.randn(input_shape)
scripted_model = torch.jit.trace(model_int8, input_data).eval()
scripted_model.save('weights/qmnist_lenet5_scripted_int8.pth')
if __name__ == '__main__':
main()