Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor interior-point method into separate file #245

Merged
merged 1 commit into from
Dec 18, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
109 changes: 6 additions & 103 deletions include/sleipnir/optimization/OptimizationProblem.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -3,15 +3,13 @@
#pragma once

#include <concepts>
#include <fstream>
#include <functional>
#include <optional>
#include <type_traits>
#include <utility>
#include <vector>

#include <Eigen/Core>
#include <Eigen/SparseCore>

#include "sleipnir/autodiff/Variable.hpp"
#include "sleipnir/autodiff/VariableMatrix.hpp"
Expand Down Expand Up @@ -372,124 +370,29 @@ class SLEIPNIR_DLLEXPORT OptimizationProblem {
// https://stackoverflow.com/a/50639754
static constexpr SolverConfig kDefaultConfig{};

// Decision variables, which are the root of the problem's expression tree
// The list of decision variables, which are the root of the problem's
// expression tree
std::vector<Variable> m_decisionVariables;

// Cost function: f(x)
// The cost function: f(x)
std::optional<Variable> m_f;

// Equality constraints: cₑ(x) = 0
// The list of equality constraints: cₑ(x) = 0
std::vector<Variable> m_equalityConstraints;

// Inequality constraints: cᵢ(x) ≥ 0
// The list of inequality constraints: cᵢ(x) ≥ 0
std::vector<Variable> m_inequalityConstraints;

SolverConfig m_config;

// Sparsity pattern files written when spy flag is set in SolverConfig
std::ofstream m_H_spy;
std::ofstream m_A_e_spy;
std::ofstream m_A_i_spy;

// The user callback
std::function<bool(const SolverIterationInfo&)> m_callback =
[](const SolverIterationInfo&) { return false; };

/**
Find the optimal solution to the nonlinear program using an interior-point
solver.

A nonlinear program has the form:

@verbatim
min_x f(x)
subject to cₑ(x) = 0
cᵢ(x) ≥ 0
@endverbatim

where f(x) is the cost function, cₑ(x) are the equality constraints, and cᵢ(x)
are the inequality constraints.

@param[in] initialGuess The initial guess.
@param[out] status The solver status.
*/
Eigen::VectorXd InteriorPoint(
const Eigen::Ref<const Eigen::VectorXd>& initialGuess,
SolverStatus* status);

/**
* Prints exit condition as a user-readable message.
*
* @param exitCondition The solver exit condition.
*/
static void PrintExitCondition(const SolverExitCondition& exitCondition);

/**
* Returns true if the problem is locally feasible.
*
* @param A_e The problem's equality constraint Jacobian Aₑ(x) evaluated at
* the current iterate.
* @param c_e The problem's equality constraints cₑ(x) evaluated at the
* current iterate.
* @param A_i The problem's inequality constraint Jacobian Aᵢ(x) evaluated at
* the current iterate.
* @param c_i The problem's inequality constraints cᵢ(x) evaluated at the
* current iterate.
*/
bool IsLocallyFeasible(const Eigen::SparseMatrix<double>& A_e,
const Eigen::VectorXd& c_e,
const Eigen::SparseMatrix<double>& A_i,
const Eigen::VectorXd& c_i) const;

/**
* Returns the error estimate using the KKT conditions for the interior-point
* method.
*
* @param g Gradient of the cost function ∇f.
* @param A_e The problem's equality constraint Jacobian Aₑ(x) evaluated at
* the current iterate.
* @param c_e The problem's equality constraints cₑ(x) evaluated at the
* current iterate.
* @param A_i The problem's inequality constraint Jacobian Aᵢ(x) evaluated at
* the current iterate.
* @param c_i The problem's inequality constraints cᵢ(x) evaluated at the
* current iterate.
* @param s Inequality constraint slack variables.
* @param y Equality constraint dual variables.
* @param z Inequality constraint dual variables.
* @param μ Barrier parameter.
*/
double ErrorEstimate(const Eigen::VectorXd& g,
const Eigen::SparseMatrix<double>& A_e,
const Eigen::VectorXd& c_e,
const Eigen::SparseMatrix<double>& A_i,
const Eigen::VectorXd& c_i, const Eigen::VectorXd& s,
const Eigen::VectorXd& y, const Eigen::VectorXd& z,
double μ) const;

/**
* Returns the KKT error for the interior-point method.
*
* @param g Gradient of the cost function ∇f.
* @param A_e The problem's equality constraint Jacobian Aₑ(x) evaluated at
* the current iterate.
* @param c_e The problem's equality constraints cₑ(x) evaluated at the
* current iterate.
* @param A_i The problem's inequality constraint Jacobian Aᵢ(x) evaluated at
* the current iterate.
* @param c_i The problem's inequality constraints cᵢ(x) evaluated at the
* current iterate.
* @param s Inequality constraint slack variables.
* @param y Equality constraint dual variables.
* @param z Inequality constraint dual variables.
* @param μ Barrier parameter.
*/
double KKTError(const Eigen::VectorXd& g,
const Eigen::SparseMatrix<double>& A_e,
const Eigen::VectorXd& c_e,
const Eigen::SparseMatrix<double>& A_i,
const Eigen::VectorXd& c_i, const Eigen::VectorXd& s,
const Eigen::VectorXd& y, const Eigen::VectorXd& z,
double μ) const;
};

} // namespace sleipnir
Loading
Loading