diff --git a/examples/embeddings_examples.py b/examples/embeddings_examples.py
index b38b7b2..35ea250 100644
--- a/examples/embeddings_examples.py
+++ b/examples/embeddings_examples.py
@@ -1,7 +1,10 @@
 from kimchima import (
     ModelFactory, 
     TokenizerFactory,
+    StreamerFactory,
     EmbeddingsFactory,
+    QuantizationFactory,
+    PipelinesFactory,
     Devices
 )
 
@@ -36,4 +39,19 @@
 
 # get capability of GPU(Nvidia)
 capability = Devices.get_capability()
-print(capability)
\ No newline at end of file
+print(capability)
+
+
+# streamer
+model= ModelFactory.auto_model_for_causal_lm(pretrained_model_name_or_path="gpt2")
+tokenizer= TokenizerFactory.auto_tokenizer(pretrained_model_name_or_path="gpt2")
+streamer= StreamerFactory.text_streamer(tokenizer=tokenizer, skip_prompt=False, skip_prompt_tokens=False)
+
+
+pipe=PipelinesFactory.text_generation(
+    model=model, 
+    tokenizer=tokenizer, 
+    text_streamer=streamer
+    )
+
+pipe("Melbourne is the capital of Victoria")
\ No newline at end of file
diff --git a/src/kimchima/pipelines/pipelines_factory.py b/src/kimchima/pipelines/pipelines_factory.py
index f8b7e2c..1b216fc 100644
--- a/src/kimchima/pipelines/pipelines_factory.py
+++ b/src/kimchima/pipelines/pipelines_factory.py
@@ -44,9 +44,6 @@ def text_generation(cls, *args,**kwargs)-> pipeline:
             raise ValueError("tokenizer is required")
         streamer=kwargs.pop("text_streamer", None)
         max_new_tokens=kwargs.pop("max_new_tokens", 20)
-        quantization_config=kwargs.pop("quantization_config", None)
-        if quantization_config is None:
-            raise ValueError("quantization_config is required")
 
         pipe=pipeline(
             task="text-generation",
@@ -54,7 +51,6 @@ def text_generation(cls, *args,**kwargs)-> pipeline:
             tokenizer=tokenizer,
             streamer=streamer,
             max_new_tokens=max_new_tokens,
-            quantization_config=quantization_config,
             device_map='auto',
             **kwargs
         )
diff --git a/src/kimchima/pkg/model_factory.py b/src/kimchima/pkg/model_factory.py
index 33746d6..9a21343 100644
--- a/src/kimchima/pkg/model_factory.py
+++ b/src/kimchima/pkg/model_factory.py
@@ -34,7 +34,7 @@ def __init__(self):
         )
 
     @classmethod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  
-    def auto_model(cls, pretrained_model_name_or_path, **kwargs)-> AutoModel:
+    def auto_model(cls, *args, **kwargs)-> AutoModel:
         r"""
         It is used to get the model from the Hugging Face Transformers AutoModel.
         
@@ -42,14 +42,21 @@ def auto_model(cls, pretrained_model_name_or_path, **kwargs)-> AutoModel:
             pretrained_model_name_or_path: pretrained model name or path
 
         """
+        pretrained_model_name_or_path=kwargs.pop("pretrained_model_name_or_path", None)
         if pretrained_model_name_or_path is None:
             raise ValueError("pretrained_model_name_or_path cannot be None")
-        model = AutoModel.from_pretrained(pretrained_model_name_or_path, **kwargs)
+
+        quantization_config=kwargs.pop("quantization_config", None)
+        model = AutoModel.from_pretrained(
+            pretrained_model_name_or_path,
+            quantization_config,
+            **kwargs
+        )
         logger.debug(f"Loaded model: {pretrained_model_name_or_path}")
         return model
     
     @classmethod
-    def auto_model_for_causal_lm(cls, pretrained_model_name_or_path, **kwargs)-> AutoModelForCausalLM:
+    def auto_model_for_causal_lm(cls, *args, **kwargs)-> AutoModelForCausalLM:
         r"""
         It is used to get the model from the Hugging Face Transformers AutoModelForCausalLM.
         
@@ -57,9 +64,17 @@ def auto_model_for_causal_lm(cls, pretrained_model_name_or_path, **kwargs)-> Aut
             pretrained_model_name_or_path: pretrained model name or path
 
         """
+        pretrained_model_name_or_path=kwargs.pop("pretrained_model_name_or_path", None)
         if pretrained_model_name_or_path is None:
             raise ValueError("pretrained_model_name_or_path cannot be None")
-        model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, **kwargs)
+
+        quantization_config=kwargs.pop("quantization_config", None)
+        model = AutoModelForCausalLM.from_pretrained(
+            pretrained_model_name_or_path, 
+            quantization_config=quantization_config,
+            device_map='auto',
+            **kwargs
+        )
         logger.debug(f"Loaded model: {pretrained_model_name_or_path}")
         return model