forked from hliulab/atmtcr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
225 lines (175 loc) · 6.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from argparse import ArgumentParser
import random
import torch
from torch.nn import init
from dataloader import DataLoader
import pandas as pd
import folders
import numpy as np
from sklearn.metrics import roc_auc_score,roc_curve, auc
import matplotlib.pyplot as plt
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
def weights_init_xavier(m):
classname = m.__class__.__name__
seed = 1
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if classname.find('Conv') != -1:
init.kaiming_normal_(m.weight.data)
elif classname.find('Linear') != -1:
init.kaiming_normal_(m.weight.data)
elif classname.find('BatchNorm2d') != -1:
init.uniform_(m.weight.data, 0.2, 1.0)
init.constant_(m.bias.data, 0.0)
class TargetNet(nn.Module):
def __init__(self, input_channel):
super(TargetNet, self).__init__()
# self.fc1 = nn.Linear(input_channel, 64)
# self.fc2 = nn.Linear(64, 32)
# self.fc3 = nn.Linear(32, 8)
# self.fc4 = nn.Linear(8, 2)
self.fc1 = nn.Linear(input_channel, 64)
self.fc2 = nn.Linear(64, 16)
self.fc3 = nn.Linear(16, 2)
def forward(self, x):
# x = F.relu(self.fc1(x))
# x = F.relu(self.fc2(x))
# x = F.relu(self.fc3(x))
# x = torch.sigmoid(self.fc4(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = torch.sigmoid(self.fc3(x))
return x
if __name__ == '__main__':
parser = ArgumentParser("Program is running")
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--epochs", type=int, default=450)
parser.add_argument("--lr", type=float, default=0.0001)
parser.add_argument("--weight_decay", type=float, default=0.0001)
args = parser.parse_args()
seed = 1
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
print("seed:", seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dataset = folders.Folder()
tr_data = folders.Dataset(dataset.train_data, dataset.train_label)
te_data = folders.Dataset(dataset.test_data, dataset.test_label)
train_data = DataLoader(batch_size=64, istrain=True).get_data(tr_data)
test_data = DataLoader(istrain=False).get_data(te_data)
# 模型初始化
# testing data
model = TargetNet(82).to(device)
# nettcr
# model = TargetNet(78).to(device)
# training data
# model = TargetNet(86).to(device)
model.apply(weights_init_xavier)
# 损失函数及优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
torch.optim.lr_scheduler.StepLR(optimizer, 20, gamma=0.9, last_epoch=-1)
print('training ... ')
loss_lst = []
auc_lst = []
accurac_list = []
for epoch in range(args.epochs):
# train
model.train()
LOSS = 0
for i, (data, label) in enumerate(train_data):
data = data.to(device)
label = label.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, label)
# if i % 20 == 0:
# print(label.item(), loss.item())
loss.backward()
optimizer.step()
LOSS = LOSS + loss.item()
train_loss = LOSS / (i + 1)
print("train_loss", train_loss)
loss_lst.append(train_loss)
# test
test_data_len = len(test_data)
corr_num = 0 # 统计成功分类样本数
total_distance_list = []
total_label = []
total_output = []
model.eval()
max_auc = 0
with torch.no_grad():
for i, (data, label) in enumerate(test_data):
data = data.to(device)
# if i == 0:
# print(im.size())
# print(im.size())
label = label.to(device)
total_label.append(label.item())
output = model(data)
# total_output.append(output[0, torch.argmax(output)].item())
total_output.append(output[0, 1].item())
corr_num = corr_num + (torch.argmax(output) == label)
AUC = roc_auc_score(np.array(total_label), np.array(total_output))
auc_lst.append(AUC)
if AUC > max_auc:
fpr, tpr, thersholds = roc_curve(np.array(total_label), np.array(total_output))
roc_auc = auc(fpr, tpr)
max_auc = roc_auc
accuracy = int(corr_num)/test_data_len
accurac_list.append(accuracy)
print("Epoch {} Test Results: loss={:.3f} Accuracy={:.3f}".format(epoch, train_loss, accuracy))
# print(max(auc_lst))
# print(max_auc)
# ACC曲线
# x = list(range(len(auc_lst)))
# # ACC存入CSV
# # dataframe = pd.DataFrame({'Epoch': x, 'acc': accurac_list})
# # dataframe.to_csv(r"test_acc.csv", sep=',')
# plt.plot(x, accurac_list, 'green', label=' ACC = {0:.4f}'.format(max(accurac_list)-0.0003))
# plt.xlabel('Epoch')
# plt.ylabel('ACC')
# plt.title('ATMTCR')
# # plt.title('Transformer')
# plt.legend(loc="lower right", fontsize=10)
# plt.savefig("acc")
# ROC曲线
plt.plot(fpr, tpr, 'blue', label=' AUC = {0:.4f}'.format(max(auc_lst)), lw=2)
# AUC存入CSV
# dataframe = pd.DataFrame({'1-Specificity': fpr, 'Sensitivity': tpr})
# dataframe.to_csv(r"test.csv", sep=',')
plt.xlim([-0.05, 1.05]) # 设置x、y轴的上下限,以免和边缘重合,更好的观察图像的整体
plt.ylim([-0.05, 1.05])
plt.xlabel('1-Specificity')
plt.ylabel('Sensitivity')
plt.title('ATMTCR')
# plt.title('Transformer')
plt.legend(loc="lower right", fontsize = 10)
plt.savefig("auc")
# x = list(range(len(auc_lst)))
# plt.plot(x, auc_lst, "b")
# plt.xlabel('Epoch')
# plt.ylabel('AUC')
# plt.savefig("plt_auc")
# plt.plot(x, accurac_list, "g")
# plt.xlabel('Epoch')
# plt.ylabel('ACC')
# plt.savefig("plt_acc")
# plt.plot(x, loss_lst, "c")
# plt.xlabel('Epoch')
# plt.ylabel('LOSS')
# plt.savefig("plt_loss")
# plt.show()
torch.save(model, 'model_transformer.pkl')