This implementation uses PanDerm for skin lesion segmentation.
Main dependencies: Pytorch, Pytorch Lightning, MMSegmentation
cd segmentation
pip install -r requirements.txt
- Download datasets:
- Update
_load_name()
in./datasets/dataset_seg.py
with your data path
-
Download Pretrained Weights
-
Set Pretrained Path
- Update
cae_weight
in./models/cae_seg.py
- Modify
pretrained
parameter inrun.sh
- Update
-
Start Training
cd segmentation bash run.sh
Note: Adjust the path config to your desired storage location
-
Evaluation
- Add
--evaluate
torun.sh
for evaluation mode - Model fine-tuned weights for evaluation on HAM10000 dataset Download here
cd segmentation bash run.sh --evaluate
This loads the checkpoint from your specified model storage path
- Add
See evaluate.ipynb to learn:
- Loading our pre-trained model
- Using it for skin lesion segmentation