Skip to content

Latest commit

 

History

History
419 lines (352 loc) · 13.4 KB

0150.逆波兰表达式求值.md

File metadata and controls

419 lines (352 loc) · 13.4 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

这不仅仅是一道好题,也展现出计算机的思考方式

150. 逆波兰表达式求值

力扣题目链接

根据 逆波兰表示法,求表达式的值。

有效的运算符包括 + ,  - ,  * ,  / 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。

说明:

整数除法只保留整数部分。 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。

示例 1:

  • 输入: ["2", "1", "+", "3", " * "]
  • 输出: 9
  • 解释: 该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

示例 2:

  • 输入: ["4", "13", "5", "/", "+"]
  • 输出: 6
  • 解释: 该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

示例 3:

  • 输入: ["10", "6", "9", "3", "+", "-11", " * ", "/", " * ", "17", "+", "5", "+"]

  • 输出: 22

  • 解释:该算式转化为常见的中缀算术表达式为:

    ((10 * (6 / ((9 + 3) * -11))) + 17) + 5       
    = ((10 * (6 / (12 * -11))) + 17) + 5       
    = ((10 * (6 / -132)) + 17) + 5     
    = ((10 * 0) + 17) + 5     
    = (0 + 17) + 5    
    = 17 + 5    
    = 22    
    

逆波兰表达式:是一种后缀表达式,所谓后缀就是指算符写在后面。

平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。

该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。

逆波兰表达式主要有以下两个优点:

  • 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。

  • 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。

思路

在上一篇文章中1047.删除字符串中的所有相邻重复项提到了 递归就是用栈来实现的。

所以栈与递归之间在某种程度上是可以转换的! 这一点我们在后续讲解二叉树的时候,会更详细的讲解到。

那么来看一下本题,其实逆波兰表达式相当于是二叉树中的后序遍历。 大家可以把运算符作为中间节点,按照后序遍历的规则画出一个二叉树。

但我们没有必要从二叉树的角度去解决这个问题,只要知道逆波兰表达式是用后续遍历的方式把二叉树序列化了,就可以了。

在进一步看,本题中每一个子表达式要得出一个结果,然后拿这个结果再进行运算,那么这岂不就是一个相邻字符串消除的过程,和1047.删除字符串中的所有相邻重复项中的对对碰游戏是不是就非常像了。

如动画所示: 150.逆波兰表达式求值

相信看完动画大家应该知道,这和1047. 删除字符串中的所有相邻重复项是差不错的,只不过本题不要相邻元素做消除了,而是做运算!

C++代码如下:

class Solution {
public:
    int evalRPN(vector<string>& tokens) {
        stack<int> st;
        for (int i = 0; i < tokens.size(); i++) {
            if (tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/") {
                int num1 = st.top();
                st.pop();
                int num2 = st.top();
                st.pop();
                if (tokens[i] == "+") st.push(num2 + num1);
                if (tokens[i] == "-") st.push(num2 - num1);
                if (tokens[i] == "*") st.push(num2 * num1);
                if (tokens[i] == "/") st.push(num2 / num1);
            } else {
                st.push(stoi(tokens[i]));
            }
        }
        int result = st.top();
        st.pop(); // 把栈里最后一个元素弹出(其实不弹出也没事)
        return result;
    }
};

题外话

我们习惯看到的表达式都是中缀表达式,因为符合我们的习惯,但是中缀表达式对于计算机来说就不是很友好了。

例如:4 + 13 / 5,这就是中缀表达式,计算机从左到右去扫描的话,扫到13,还要判断13后面是什么运算法,还要比较一下优先级,然后13还和后面的5做运算,做完运算之后,还要向前回退到 4 的位置,继续做加法,你说麻不麻烦!

那么将中缀表达式,转化为后缀表达式之后:["4", "13", "5", "/", "+"] ,就不一样了,计算机可以利用栈里顺序处理,不需要考虑优先级了。也不用回退了, 所以后缀表达式对计算机来说是非常友好的。

可以说本题不仅仅是一道好题,也展现出计算机的思考方式。

在1970年代和1980年代,惠普在其所有台式和手持式计算器中都使用了RPN(后缀表达式),直到2020年代仍在某些模型中使用了RPN。

参考维基百科如下:

During the 1970s and 1980s, Hewlett-Packard used RPN in all of their desktop and hand-held calculators, and continued to use it in some models into the 2020s.

其他语言版本

java:

class Solution {
    public int evalRPN(String[] tokens) {
        Deque<Integer> stack = new LinkedList();
        for (String s : tokens) {
            if ("+".equals(s)) {        // leetcode 内置jdk的问题,不能使用==判断字符串是否相等
                stack.push(stack.pop() + stack.pop());      // 注意 - 和/ 需要特殊处理
            } else if ("-".equals(s)) {
                stack.push(-stack.pop() + stack.pop());
            } else if ("*".equals(s)) {
                stack.push(stack.pop() * stack.pop());
            } else if ("/".equals(s)) {
                int temp1 = stack.pop();
                int temp2 = stack.pop();
                stack.push(temp2 / temp1);
            } else {
                stack.push(Integer.valueOf(s));
            }
        }
        return stack.pop();
    }
}

Go:

func evalRPN(tokens []string) int {
	stack := []int{}
	for _, token := range tokens {
		val, err := strconv.Atoi(token)
		if err == nil {
			stack = append(stack, val)
		} else {
			num1, num2 := stack[len(stack)-2], stack[(len(stack))-1]
			stack = stack[:len(stack)-2]
			switch token {
			case "+":
				stack = append(stack, num1+num2)
			case "-":
				stack = append(stack, num1-num2)
			case "*":
				stack = append(stack, num1*num2)
			case "/":
				stack = append(stack, num1/num2)
			}
		}
	}
	return stack[0]
}

javaScript:

/**
 * @param {string[]} tokens
 * @return {number}
 */
var evalRPN = function(tokens) {
    const s = new Map([
        ["+", (a, b) => a * 1  + b * 1],
        ["-", (a, b) => b - a],
        ["*", (a, b) => b * a],
        ["/", (a, b) => (b / a) | 0]
    ]);
    const stack = [];
    for (const i of tokens) {
        if(!s.has(i)) {
            stack.push(i);
            continue;
        }
        stack.push(s.get(i)(stack.pop(),stack.pop()))
    }
    return stack.pop();
};

TypeScript:

普通版:

function evalRPN(tokens: string[]): number {
    let helperStack: number[] = [];
    let temp: number;
    let i: number = 0;
    while (i < tokens.length) {
        let t: string = tokens[i];
        switch (t) {
            case '+':
                temp = helperStack.pop()! + helperStack.pop()!;
                helperStack.push(temp);
                break;
            case '-':
                temp = helperStack.pop()!;
                temp = helperStack.pop()! - temp;
                helperStack.push(temp);
                break;
            case '*':
                temp = helperStack.pop()! * helperStack.pop()!;
                helperStack.push(temp);
                break;
            case '/':
                temp = helperStack.pop()!;
                temp = Math.trunc(helperStack.pop()! / temp);
                helperStack.push(temp);
                break;
            default:
                helperStack.push(Number(t));
                break;
        }
        i++;
    }
    return helperStack.pop()!;
};

优化版:

function evalRPN(tokens: string[]): number {
    const helperStack: number[] = [];
    const operatorMap: Map<string, (a: number, b: number) => number> = new Map([
        ['+', (a, b) => a + b],
        ['-', (a, b) => a - b],
        ['/', (a, b) => Math.trunc(a / b)],
        ['*', (a, b) => a * b],
    ]);
    let a: number, b: number;
    for (let t of tokens) {
        if (operatorMap.has(t)) {
            b = helperStack.pop()!;
            a = helperStack.pop()!;
            helperStack.push(operatorMap.get(t)!(a, b));
        } else {
            helperStack.push(Number(t));
        }
    }
    return helperStack.pop()!;
};

python3

class Solution:
    def evalRPN(self, tokens: List[str]) -> int:
        stack = []
        for item in tokens:
            if item not in {"+", "-", "*", "/"}:
                stack.append(item)
            else:
                first_num, second_num = stack.pop(), stack.pop()
                stack.append(
                    int(eval(f'{second_num} {item} {first_num}'))   # 第一个出来的在运算符后面
                )
        return int(stack.pop()) # 如果一开始只有一个数,那么会是字符串形式的

Swift:

func evalRPN(_ tokens: [String]) -> Int {
    var stack = [Int]()
    for c in tokens {
        let v = Int(c)
        if let num = v {
            // 遇到数字直接入栈
            stack.append(num)
        } else {
            // 遇到运算符, 取出栈顶两元素计算, 结果压栈
            var res: Int = 0
            let num2 = stack.popLast()!
            let num1 = stack.popLast()!
            switch c {
            case "+":
                res = num1 + num2
            case "-":
                res = num1 - num2
            case "*":
                res = num1 * num2
            case "/":
                res = num1 / num2
            default:
                break
            }
            stack.append(res)
        }
    }
    return stack.last!
}

C#:

public int EvalRPN(string[] tokens) {
        int num;
        Stack<int> stack = new Stack<int>();
        foreach(string s in tokens){
           if(int.TryParse(s, out num)){
                stack.Push(num);
            }else{
                int num1 = stack.Pop();
                int num2 = stack.Pop();
                switch (s)
                {
                    case "+":
                        stack.Push(num1 + num2);
                        break;
                    case "-":
                        stack.Push(num2 - num1);
                        break;
                    case "*":
                        stack.Push(num1 * num2);
                        break;
                    case "/":
                        stack.Push(num2 / num1);
                        break;
                    default:
                        break;
                }
            }
        }
        return stack.Pop(); 
    }

PHP:

class Solution {
    function evalRPN($tokens) {
        $st = new SplStack();
        for($i = 0;$i<count($tokens);$i++){
            // 是数字直接入栈
            if(is_numeric($tokens[$i])){ 
                $st->push($tokens[$i]);
            }else{ 
                // 是符号进行运算
                $num1 = $st->pop();
                $num2 = $st->pop();
                if ($tokens[$i] == "+") $st->push($num2 + $num1);
                if ($tokens[$i] == "-") $st->push($num2 - $num1);
                if ($tokens[$i] == "*") $st->push($num2 * $num1);
                // 注意处理小数部分
                if ($tokens[$i] == "/") $st->push(intval($num2 / $num1));
            }
        }
        return $st->pop();
    }
}

Scala:

object Solution {
  import scala.collection.mutable
  def evalRPN(tokens: Array[String]): Int = {
    val stack = mutable.Stack[Int]()    // 定义栈
    // 抽取运算操作,需要传递x,y,和一个函数
    def operator(x: Int, y: Int, f: (Int, Int) => Int): Int = f(x, y)
    for (token <- tokens) {
      // 模式匹配,匹配不同的操作符做什么样的运算
      token match {
        // 最后一个参数 _+_,代表x+y,遵循Scala的函数至简原则,以下运算同理
        case "+" => stack.push(operator(stack.pop(), stack.pop(), _ + _))  
        case "-" => stack.push(operator(stack.pop(), stack.pop(), -_ + _))
        case "*" => stack.push(operator(stack.pop(), stack.pop(), _ * _))
        case "/" => {
          var pop1 = stack.pop()
          var pop2 = stack.pop()
          stack.push(operator(pop2, pop1, _ / _))
        }
        case _ => stack.push(token.toInt)   // 不是运算符就入栈
      }
    }
    // 最后返回栈顶,不需要加return关键字
    stack.pop() 
  }

}