-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
241 lines (214 loc) · 8.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import pytorch
import torch
from transformers import BertTokenizer, BertForMaskedLM, Trainer, TrainingArguments
from bs4 import BeautifulSoup
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.common.exceptions import WebDriverException
import logging
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from qiskit import Aer, IBMQ
from qiskit import IBMQAccountError
from qiskit.optimization import QuadraticProgram
from qiskit.optimization.algorithms import MinimumEigenOptimizer
from qiskit.algorithms import QAOA
from qiskit.utils import QuantumInstance
import openai
from datasets import Dataset, DatasetDict
import time
import os
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def download_nltk_resources():
"""Downloads required NLTK resources."""
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
nltk.download('wordnet', quiet=True)
def clean_data(data: str) -> str:
"""Clean and preprocess the scraped data."""
soup = BeautifulSoup(data, 'html.parser')
text = soup.get_text()
tokens = word_tokenize(text)
tokens = [word for word in tokens if word.isalpha()]
stop_words = set(stopwords.words('english'))
tokens = [word for word in tokens if word.lower() not in stop_words]
lemmatizer = WordNetLemmatizer()
tokens = [lemmatizer.lemmatize(word) for word in tokens]
return ' '.join(tokens)
def handle_webdriver_exception(e):
"""Handles WebDriver exceptions and logs the error."""
logger.error("Error in data collection: %s", e)
return ""
def collect_and_preprocess_data(url: str) -> str:
"""Collect and preprocess data from a given URL."""
options = Options()
options.add_argument("--headless") # Run in headless mode
try:
with webdriver.Chrome(options=options) as driver:
driver.get(url)
time.sleep(3) # Adjust as necessary to wait for the page to load
scraped_data = driver.page_source
cleaned_data = clean_data(scraped_data)
print("Data collection and preprocessing completed.")
return cleaned_data
except WebDriverException as e:
return handle_webdriver_exception(e)
def train_model(train_data: str):
"""Train the DarkBERT model."""
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
train_encodings = tokenizer(train_data, truncation=True, padding=True, return_tensors='pt')
# For MLM, labels are needed. Mask some of the tokens for training.
inputs = train_encodings['input_ids']
labels = inputs.clone()
# We sample a few tokens in each sequence for MLM training (with probability 0.15)
rand = torch.rand(labels.shape)
mask_arr = (rand < 0.15) * (inputs != tokenizer.cls_token_id) * \
(inputs != tokenizer.pad_token_id) * (inputs != tokenizer.sep_token_id)
labels[~mask_arr] = -100 # We only compute loss on masked tokens
dataset = Dataset.from_dict({
'input_ids': inputs,
'attention_mask': train_encodings['attention_mask'],
'labels': labels
})
train_dataset = DatasetDict({
'train': dataset
})
model = BertForMaskedLM.from_pretrained('bert-base-uncased')
training_args = TrainingArguments(
output_dir='./results_darkbert',
num_train_epochs=3,
per_device_train_batch_size=8,
save_steps=10_000,
save_total_limit=2,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset['train'],
)
trainer.train()
model.save_pretrained('./trained_darkbert')
tokenizer.save_pretrained('./trained_darkbert')
print("Model training completed and model saved.")
def select_model():
"""Select the model for advanced search."""
model_choice = input("Select the model for advanced search (1. BERT, 2. DarkBERT): ")
while model_choice not in ['1', '2']:
print("Invalid choice. Please enter 1 or 2.")
model_choice = input("Select the model for advanced search (1. BERT, 2. DarkBERT): ")
if model_choice == '1':
model_name = 'bert-base-uncased'
elif model_choice == '2':
model_name = './trained_darkbert'
return model_name
def integrate_quantum_optimization(data, retry=False):
"""Integrate quantum computing for optimization tasks."""
try:
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
backend = Aer.get_backend('qasm_simulator')
quantum_instance = QuantumInstance(backend, shots=1024)
qaoa = QAOA(quantum_instance=quantum_instance)
optimizer = MinimumEigenOptimizer(qaoa)
problem = create_optimization_problem(data) # Create
result = optimizer.solve(problem)
print("Quantum optimization completed. Result:", result)
return result
except IBMQAccountError:
logger.error("Error: IBM Quantum account credentials are missing or invalid.")
if not retry:
api_token = input("Enter your IBM Quantum API token: ")
try:
IBMQ.save_account(api_token)
IBMQ.load_account()
integrate_quantum_optimization(data, retry=True)
except IBMQAccountError:
logger.error("Failed to load IBM Quantum account with provided token.")
else:
logger.error("IBMQAccountError occurred even after retry.")
except Exception as e:
logger.error("Unexpected error in quantum integration: %s", e)
def create_optimization_problem(data):
"""Create a QuadraticProgram for a specific optimization task."""
# Placeholder: Depending on the task, define the problem with appropriate constraints and objectives
# For example, for text analysis, it could involve optimizing parameters for NLP models or clustering algorithms
pass
def advanced_search(query: str, model: BertForMaskedLM, tokenizer: BertTokenizer):
"""Perform advanced search using the specified model."""
try:
inputs = tokenizer(query, return_tensors='pt')
outputs = model(**inputs)
return outputs
except Exception as e:
logger.error("Error in advanced search: %s", e)
return None
def scrape_hacker_forums_with_quantum(query: str) -> list:
"""Scrape hacker forums for code snippets using OpenAI Codex with quantum assistance."""
try:
response = openai.Completion.create(
engine="davinci-codex",
prompt=query,
max_tokens=100,
n=5,
stop=None,
temperature=0.7
)
return [choice.text.strip() for choice in response.choices]
except Exception as e:
logger.error("Error in Codex integration: %s", e)
return []
def show_menu():
"""Display the main menu options."""
print("Main Menu:")
print("1. Collect and preprocess data from Dark Web URL")
print("2. Train DarkBERT model")
print("3. Select model for advanced search")
print("4. Perform advanced search")
print("5. Scrape hacker forums with quantum assistance")
print("6. Integrate quantum optimization for specific tasks")
print("7. Exit")
def main():
"""Main function to execute the program."""
download_nltk_resources()
while True:
show_menu()
choice = input("Enter your choice: ")
if choice == '1':
url = input("Enter the URL to collect data from: ")
cleaned_data = collect_and_preprocess_data(url)
# Placeholder: Add functionality for malware detection
# Placeholder: Add functionality for code review
elif choice == '2':
train_data = input("Enter training data for DarkBERT: ")
train_model(train_data)
elif choice == '3':
model_name = select_model()
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForMaskedLM.from_pretrained(model_name)
elif choice == '4':
query = input("Enter your query for advanced search: ")
if 'model' not in locals():
print("Please select a model first (Option 3).")
continue
outputs = advanced_search(query, model, tokenizer)
if outputs:
print(outputs)
elif choice == '5':
query = input("Enter your query for hacker forums: ")
code_snippets = scrape_hacker_forums_with_quantum(query)
for snippet in code_snippets:
print(snippet)
elif choice == '6':
data = input("Enter data for optimization task: ")
integrate_quantum_optimization(data)
elif choice == '7':
print("Exiting the program...")
break
else:
print("Invalid choice. Please enter a number from 1 to 7.")
if __name__ == "__main__":
main()