-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
461 lines (411 loc) · 19.3 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
"""
Usage:
run.py train METHOD TRAIN SENT_VOCAB TAG_VOCAB_NER TAG_VOCAB_ENTITY [options]
run.py test METHOD TEST SENT_VOCAB TAG_VOCAB_NER TAG_VOCAB_ENTITY MODEL [options]
Options:
--dropout-rate=<float> dropout rate [default: 0.5]
--embed-size=<int> size of word embedding [default: 256]
--hidden-size=<int> size of hidden state [default: 256]
--batch-size=<int> batch-size [default: 32]
--max-epoch=<int> max epoch [default: 10]
--clip_max_norm=<float> clip max norm [default: 5.0]
--lr=<float> learning rate [default: 0.001]
--log-every=<int> log every [default: 10]
--validation-every=<int> validation every [default: 250]
--patience-threshold=<float> patience threshold [default: 0.98]
--max-patience=<int> time of continuous worse performance to decay lr [default: 4]
--max-decay=<int> time of lr decay to early stop [default: 4]
--lr-decay=<float> decay rate of lr [default: 0.5]
--model-save-path=<file> model save path [default: ./model/model.pth]
--optimizer-save-path=<file> optimizer save path [default: ./model/optimizer.pth]
--cuda use GPU
"""
from docopt import docopt
from vocab import Vocab
import time
import torch
import torch.nn as nn
import bilstm_crf
import utils
import random
import codecs
from collections import Counter
import json
import fasttext
import numpy as np
def train(args, weights_matrix):
""" Training BiLSTMCRF model
Args:
args: dict that contains options in command
"""
sent_vocab = Vocab.load(args['SENT_VOCAB'])
tag_vocab_ner = Vocab.load(args['TAG_VOCAB_NER'])
tag_vocab_entity = Vocab.load(args['TAG_VOCAB_ENTITY'])
method = args['METHOD']
train_data, dev_data = utils.generate_train_dev_dataset(args['TRAIN'], sent_vocab, tag_vocab_ner, tag_vocab_entity)
print('num of training examples: %d' % (len(train_data)))
print('num of development examples: %d' % (len(dev_data)))
max_epoch = int(args['--max-epoch'])
log_every = int(args['--log-every'])
validation_every = int(args['--validation-every'])
model_save_path = args['--model-save-path']
optimizer_save_path = args['--optimizer-save-path']
min_dev_loss = float('inf')
device = torch.device('cuda' if args['--cuda'] else 'cpu')
patience, decay_num = 0, 0
model = bilstm_crf.BiLSTMCRF(weights_matrix, sent_vocab, tag_vocab_ner, tag_vocab_entity, float(args['--dropout-rate']), int(args['--embed-size']),
int(args['--hidden-size'])).to(device)
print(model)
# for name, param in model.named_parameters():
# if 'weight' in name:
# nn.init.normal_(param.data, 0, 0.01)
# else:
# nn.init.constant_(param.data, 0)
optimizer = torch.optim.Adam(model.parameters(), lr=float(args['--lr']))
train_iter = 0 # train iter num
record_loss_sum, record_tgt_word_sum, record_batch_size = 0, 0, 0 # sum in one training log
cum_loss_sum, cum_tgt_word_sum, cum_batch_size = 0, 0, 0 # sum in one validation log
record_start, cum_start = time.time(), time.time()
print('start training...')
for epoch in range(max_epoch):
for sentences, tags_ner, tags_entity in utils.batch_iter(train_data, batch_size=int(args['--batch-size'])):
train_iter += 1
current_batch_size = len(sentences)
sentences, sent_lengths = utils.pad(sentences, sent_vocab[sent_vocab.PAD], device)
tags_ner, _ = utils.pad(tags_ner, tag_vocab_ner[tag_vocab_ner.PAD], device)
tags_entity, _ = utils.pad(tags_entity, tag_vocab_entity[tag_vocab_entity.PAD], device)
# back propagation
optimizer.zero_grad()
batch_loss = model(sentences, tags_ner, tags_entity, sent_lengths, method) # shape: (b,)
loss = batch_loss.mean()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=float(args['--clip_max_norm']))
optimizer.step()
record_loss_sum += batch_loss.sum().item()
record_batch_size += current_batch_size
record_tgt_word_sum += sum(sent_lengths)
cum_loss_sum += batch_loss.sum().item()
cum_batch_size += current_batch_size
cum_tgt_word_sum += sum(sent_lengths)
if train_iter % log_every == 0:
print('log: epoch %d, iter %d, %.1f words/sec, avg_loss %f, time %.1f sec' %
(epoch + 1, train_iter, record_tgt_word_sum / (time.time() - record_start),
record_loss_sum / record_batch_size, time.time() - record_start))
record_loss_sum, record_batch_size, record_tgt_word_sum = 0, 0, 0
record_start = time.time()
if train_iter % validation_every == 0:
print('dev: epoch %d, iter %d, %.1f words/sec, avg_loss %f, time %.1f sec' %
(epoch + 1, train_iter, cum_tgt_word_sum / (time.time() - cum_start),
cum_loss_sum / cum_batch_size, time.time() - cum_start))
cum_loss_sum, cum_batch_size, cum_tgt_word_sum = 0, 0, 0
dev_loss = cal_dev_loss(model, dev_data, 64, sent_vocab, tag_vocab_ner, tag_vocab_entity, device, method)
if dev_loss < min_dev_loss * float(args['--patience-threshold']):
min_dev_loss = dev_loss
model.save(model_save_path)
torch.save(optimizer.state_dict(), optimizer_save_path)
print('Reached %d epochs, Save result model to %s' % (epoch, model_save_path))
patience = 0
# Save the word embeddings
print("Saving the model")
params = torch.load(model_save_path, map_location=lambda storage, loc: storage)
new_weights_matrix = params['state_dict']['embedding.weight']
b = new_weights_matrix.tolist()
file_path = "./data/weights_matrix.json"
json.dump(b, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
else:
patience += 1
if patience == int(args['--max-patience']):
decay_num += 1
if decay_num == int(args['--max-decay']):
return
lr = optimizer.param_groups[0]['lr'] * float(args['--lr-decay'])
model = bilstm_crf.BiLSTMCRF.load(weights_matrix, model_save_path, device)
optimizer.load_state_dict(torch.load(optimizer_save_path))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
patience = 0
print('dev: epoch %d, iter %d, dev_loss %f, patience %d, decay_num %d' %
(epoch + 1, train_iter, dev_loss, patience, decay_num))
cum_start = time.time()
if train_iter % log_every == 0:
record_start = time.time()
# model.save(model_save_path)
# print('Reached %d epochs, Save result model to %s' % (max_epoch, model_save_path))
def test(args, weights_matrix):
""" Testing the model
Args:
args: dict that contains options in command
"""
sent_vocab = Vocab.load(args['SENT_VOCAB'])
tag_vocab = Vocab.load(args['TAG_VOCAB_NER'])
sentences, tags = utils.read_corpus(args['TEST'])
sentences = utils.words2indices(sentences, sent_vocab)
# Method
method = args['METHOD']
# # Convert to binary tags (if there is a tag or not)
tags_entity = utils.entity_or_not(tags)
# Convert from IOBES to IOB
tags = iobes_iob(tags)
tags = utils.words2indices(tags, tag_vocab)
test_data = list(zip(sentences, tags, tags_entity))
print('num of test samples: %d' % (len(test_data)))
device = torch.device('cuda' if args['--cuda'] else 'cpu')
model = bilstm_crf.BiLSTMCRF.load(weights_matrix, args['MODEL'], device)
print('start testing...')
print('using device', device)
start = time.time()
n_iter, num_words = 0, 0
tp, fp, fn = 0, 0, 0
model.eval()
with torch.no_grad():
for sentences, tags, tags_entity in utils.batch_iter(test_data, batch_size=int(args['--batch-size']), shuffle=False):
sentences, sent_lengths = utils.pad(sentences, sent_vocab[sent_vocab.PAD], device)
predicted_tags = model.predict(sentences, sent_lengths, method)
n_iter += 1
num_words += sum(sent_lengths)
for tag, predicted_tag in zip(tags, predicted_tags):
current_tp, current_fp, current_fn = cal_statistics(tag, predicted_tag, tag_vocab)
tp += current_tp
fp += current_fp
fn += current_fn
if n_iter % int(args['--log-every']) == 0:
print('log: iter %d, %.1f words/sec, precision %f, recall %f, f1_score %f, time %.1f sec' %
(n_iter, num_words / (time.time() - start), tp / (tp + fp), tp / (tp + fn),
(2 * tp) / (2 * tp + fp + fn), time.time() - start))
num_words = 0
start = time.time()
print('tp = %d, fp = %d, fn = %d' % (tp, fp, fn))
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f1_score = (2 * tp) / (2 * tp + fp + fn)
print('Precision: %f, Recall: %f, F1 score: %f' % (precision, recall, f1_score))
def cal_dev_loss(model, dev_data, batch_size, sent_vocab, tag_vocab_ner, tag_vocab_entity, device, method):
""" Calculate loss on the development data
Args:
model: the model being trained
dev_data: development data
batch_size: batch size
sent_vocab: sentence vocab
tag_vocab: tag vocab
device: torch.device on which the model is trained
Returns:
the average loss on the dev data
"""
is_training = model.training
model.eval()
loss, n_sentences = 0, 0
with torch.no_grad():
for sentences, tags_ner, tags_entity in utils.batch_iter(dev_data, batch_size, shuffle=False):
sentences, sent_lengths = utils.pad(sentences, sent_vocab[sent_vocab.PAD], device)
tags_ner, _ = utils.pad(tags_ner, tag_vocab_ner[sent_vocab.PAD], device)
tags_entity, _ = utils.pad(tags_entity, tag_vocab_entity[sent_vocab.PAD], device)
batch_loss = model(sentences, tags_ner, tags_entity, sent_lengths, method) # shape: (b,)
loss += batch_loss.sum().item()
n_sentences += len(sentences)
model.train(is_training)
return loss / n_sentences
def cal_statistics(tag, predicted_tag, tag_vocab):
""" Calculate TN, FN, FP for the given true tag and predicted tag.
Args:
tag (list[int]): true tag
predicted_tag (list[int]): predicted tag
tag_vocab: tag vocab
Returns:
tp: true positive
fp: false positive
fn: false negative
"""
tp, fp, fn = 0, 0, 0
def func(tag1, tag2):
a, b, i = 0, 0, 0
while i < len(tag1):
if tag1[i] == tag_vocab['O']:
i += 1
continue
begin, end = i, i
while end + 1 < len(tag1) and tag1[end + 1] != tag_vocab['O']:
end += 1
equal = True
for j in range(max(0, begin - 1), min(len(tag1), end + 2)):
if tag1[j] != tag2[j]:
equal = False
break
a, b = a + equal, b + 1 - equal
i = end + 1
return a, b
t, f = func(tag, predicted_tag)
tp += t
fn += f
t, f = func(predicted_tag, tag)
fp += f
return tp, fp, fn
def preprocess_data(args, parameter='TRAIN'):
"""
Load sentences. A line must contain at least a word and its tag.
Sentences are separated by empty lines.
"""
sentences = []
sentence = []
for line in codecs.open(args[parameter], 'r', 'utf8'):
line = line.rstrip()
if not line:
if len(sentence) > 0:
if 'DOCSTART' not in sentence[0][0]:
sentences.append(sentence)
sentence = []
else:
word = line.split()
assert len(word) >= 2
sentence.append(word)
if len(sentence) > 0:
if 'DOCSTART' not in sentence[0][0]:
sentences.append(sentence)
tags_ner = ['<START>', '<END>', '<PAD>', '-DOCSTART-']
tags_entity = ['<START>', '<END>', '<PAD>', '-DOCSTART-']
words = ['<START>', '<END>', '<PAD>', '-DOCSTART-']
for sentence in sentences:
for sent in sentence:
words.append(sent[0])
tags_ner.append(sent[1])
if sent[1] == 'O':
tags_entity.append('O')
else:
tags_entity.append('Y')
unique_tags_ner = list(Counter(tags_ner).keys())
unique_tags_entity = list(Counter(tags_entity).keys())
unique_words = list(Counter(words).keys())
return unique_tags_ner, unique_tags_entity, unique_words
def create_vocab(unique_tags_ner, unique_tags_entity, unique_words):
# For tags NER
unique_tags_dict = {unique_tags_ner[i]: i for i in range(len(unique_tags_ner))}
tag_vocab = {"word2id": unique_tags_dict, "id2word": unique_tags_ner}
json_object = json.dumps(tag_vocab)
with open("./vocab/tag_vocab_ner.json", "w") as outfile:
outfile.write(json_object)
# For tags entity
unique_tags_dict = {unique_tags_entity[i]: i for i in range(len(unique_tags_entity))}
tag_vocab = {"word2id": unique_tags_dict, "id2word": unique_tags_entity}
json_object = json.dumps(tag_vocab)
with open("./vocab/tag_vocab_entity.json", "w") as outfile:
outfile.write(json_object)
# For words
unique_words_dict = {unique_words[i]: i for i in range(len(unique_words))}
sent_vocab = {"word2id": unique_words_dict, "id2word": unique_words}
json_object = json.dumps(sent_vocab)
with open("./vocab/sent_vocab.json", "w") as outfile:
outfile.write(json_object)
# Write the unique words into a text file
with open('./data/data.txt', 'w', encoding='utf-8') as f:
for word in unique_words:
f.write(word + " ")
# Train the fasttext model
model = fasttext.train_unsupervised('./data/data.txt', model='skipgram', minCount=1, dim=300)
model.save_model('./data/my_model.bin')
return unique_words_dict
def pretrained(target_vocab, emb_dim=300):
# Load pre-trained model
model = fasttext.load_model('./data/Pre-trained embeddings/crawl-300d-2M-subword.bin')
# model = fasttext.load_model('./data/my_model.bin')
print("Done loading the pre-trained model.")
matrix_len = len(target_vocab)
weights_matrix = np.zeros((matrix_len, emb_dim))
words_found = 0
for word, i in target_vocab.items():
try:
weights_matrix[i] = np.array(model[word]).astype(np.float)
words_found += 1
except KeyError:
weights_matrix[i] = np.random.normal(scale=0.6, size=(emb_dim,))
print("Total number of words are ", len(target_vocab))
print("Total number of words found in pre-trained embeddings are ", words_found)
b = weights_matrix.tolist()
file_path = "./data/weights_matrix.json"
json.dump(b, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
return weights_matrix
def iobes_iob(tags):
"""
IOBES -> IOB
"""
new_tags = []
for curr_set in tags:
temp_tags = []
for j, tag in enumerate(curr_set):
if tag.split('-')[0] == 'B':
temp_tags.append(tag)
elif tag.split('-')[0] == 'I':
temp_tags.append(tag)
elif tag.split('-')[0] == 'S':
temp_tags.append(tag.replace('S-', 'B-'))
elif tag.split('-')[0] == 'E':
temp_tags.append(tag.replace('E-', 'I-'))
elif tag.split('-')[0] == 'O':
temp_tags.append(tag)
else:
temp_tags.append(tag)
# raise Exception('Invalid format!')
new_tags.append(temp_tags)
return new_tags
def main():
args = docopt(__doc__)
random.seed(0)
torch.manual_seed(0)
if args['--cuda']:
torch.cuda.manual_seed(0)
if args['train']:
unique_tags_ner, unique_tags_entity, unique_words = preprocess_data(args, 'TRAIN')
unique_words_dict = create_vocab(unique_tags_ner, unique_tags_entity, unique_words)
print("Done preprocessing the data")
weights_matrix = pretrained(unique_words_dict)
print("Done computing the weights matrix")
train(args, weights_matrix)
elif args['test']:
# Load the weights matrix file generated while training
file_path = "./data/weights_matrix.json"
obj_text = codecs.open(file_path, 'r', encoding='utf-8').read()
b_new = json.loads(obj_text)
weights_matrix = np.array(b_new)
# Get the unique words and unique tags from the test file
unique_tags_ner, unique_tags_entity, unique_words = preprocess_data(args, 'TEST')
# Add the unique words from the test data (not present in train data) to the dictionary
# Load the train vocab
with open('./vocab/sent_vocab.json') as json_file:
train_vocab = json.load(json_file)
train_words = train_vocab["id2word"]
model = fasttext.load_model('./data/my_model.bin')
final_words = list()
for word in unique_words:
if word in train_words:
continue
else:
final_words.append(word)
# If there are new words
if len(final_words) > 0:
unique_words_dict = {final_words[i]: i+len(weights_matrix) for i in range(len(final_words))}
# Update the weights_matrix
matrix_len = len(unique_words_dict)+len(weights_matrix)
final_weights_matrix = np.zeros((matrix_len, 300))
# Rewrite the train weights
for i in range(len(weights_matrix)):
final_weights_matrix[i] = weights_matrix[i]
# Write the test weights
for word, i in unique_words_dict.items():
try:
final_weights_matrix[i] = np.array(model.get_word_vector(word)).astype(np.float)
except KeyError:
final_weights_matrix[i] = np.random.normal(scale=0.6, size=(300,))
final_dict = {**unique_words_dict, **train_vocab["word2id"]}
final_id2word = train_words+final_words
sent_vocab = {"word2id": final_dict, "id2word": final_id2word}
json_object = json.dumps(sent_vocab)
with open("./vocab/sent_vocab.json", "w") as outfile:
outfile.write(json_object)
print("Finally here!!")
b = final_weights_matrix.tolist()
file_path = "./data/weights_matrix.json"
json.dump(b, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
test(args, final_weights_matrix)
else:
print("It entered here!")
test(args, weights_matrix)
if __name__ == '__main__':
main()