-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcodegotllama.txt
34 lines (26 loc) · 1.06 KB
/
codegotllama.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# Eda-regression Makefile
# Define variables
DATA_FILE = eda-regression.csv
OUTPUT_DIR = output/
MODEL_OUTPUT = model_output/
# Step 1: Import data
import-data:
aws s3 cp s3://your-bucket-name/$DATA_FILE $OUTPUT_DIR
gzip -d $OUTPUT_DIR$DATA_FILE.gz
# Step 2: Clean data (e.g. handle missing values, convert datatypes)
clean-data: import-data
python clean_data.py $OUTPUT_DIR$DATA_FILE
# Step 3: Explore data using EDA tools (e.g. correlation matrix, histograms)
eda:
python eda.py $OUTPUT_DIR$DATA_FILE
# Step 4: Split data into training and testing sets
split-data: clean-data eda
python split_data.py $OUTPUT_DIR$DATA_FILE 0.8
# Step 5: Train a machine learning model (e.g. linear regression)
train-model: split-data
python train_model.py $OUTPUT_DIR$DATA_FILE.split 0.2
# Step 6: Evaluate the trained model using metrics (e.g. mean squared error)
evaluate-model: train-model
python evaluate_model.py $OUTPUT_DIR$MODEL_OUTPUT/model.pkl
# Default target (runs all steps)
default: import-data clean-data eda split-data train-model evaluate-model