-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5ceb321
commit c6713a5
Showing
1 changed file
with
115 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
# Import libraries and packages | ||
import matplotlib.pyplot as plt # plot graphs and images | ||
import numpy as np # linear algebra | ||
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) | ||
import argparse # for parsing arguments | ||
import os | ||
|
||
# PyTorch | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torch.autograd import Variable | ||
import torchvision | ||
import torchvision.transforms as transforms | ||
|
||
# VGG16 model | ||
from AElib.VGG import VGG16 | ||
|
||
# Adversarial attacks | ||
from AElib.attacks import fgsm_attack, pgd_linf | ||
|
||
# Utilites | ||
from AElib.utils import to_numpy_array | ||
|
||
LABELS_MNIST = {} | ||
LABELS_FMNIST = {} | ||
|
||
|
||
def applyAttack(data_loader, model, eps, attack): | ||
accs = [] | ||
total = 0 | ||
correct = 0 | ||
|
||
# epsilon = 0 means no attack | ||
if eps == 0: | ||
flag = 1 | ||
|
||
for i, (imgs, labels) in enumerate(data_loader): | ||
imgs, labels = imgs.to(device), labels.to(device) | ||
imgs, labels = Variable(imgs, requires_grad=True), Variable(labels) | ||
|
||
if attack == 'fgsm': | ||
adv_imgs, new_preds = fgsm_attack(model, imgs, labels, eps) | ||
elif attack == 'pgd': | ||
adv_imgs, new_preds = pgd_linf(model, imgs, labels, eps, alpha=1e-2, num_iter=40, flag=flag) | ||
|
||
# plot the perturbed image and noise | ||
f = plt.figure(figsize=(15, 7)) | ||
gs = f.add_gridspec(1, 3) | ||
gs.update(wspace=0.5) | ||
|
||
img, adv_img = imgs[0], adv_imgs[0] | ||
img, adv_img = to_numpy_array(img), to_numpy_array(adv_img) | ||
|
||
ax = f.add_subplot(gs[0, 1]) | ||
ax.imshow(adv_img) | ||
ax.set_xlabel(f"Perturbed Image") | ||
|
||
correct += (new_preds==labels).sum().item() | ||
total += labels.size(0) | ||
|
||
accs.append((correct / total)) | ||
print("Epsilon: {}, Test Accuracy: {}".format(eps, correct / total)) | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser( | ||
prog='Adversarial Attack', | ||
description='''Deep Learning models are notoriously known for being overconfident in their predictions. | ||
Szegedy et al. (https://arxiv.org/abs/1312.6199) discovered that Deep Neural Network models can be manipulated into making | ||
wrong predictions by adding small perturbations to the input image. | ||
This script demonstrates how to attack a VGG16 model trained on MNIST and Fashion MNIST datasets using FGSM (Fast Gradient Sign Method) | ||
and PGD (Projected Gradient Descent) attacks. | ||
''', | ||
epilog='''The VGG16 model gives a 99.2% accuracy on the MNIST dataset and 92.1% accuracy on the Fashion MNIST dataset.''', | ||
) | ||
# inputs | ||
parser.add_argument('--attack', type=str, choices=['fgsm', 'pgd'], default='pgd', help='type of attack') | ||
parser.add_argument('--dataset', type=str, choices=['mnist', 'fashion_mnist'], default='mnist', help='dataset to use') | ||
parser.add_argument('--epsilon', type=float, default=0.3, | ||
help='strength of the Adversarial Attack. If FGSM attack is used, keep this value in the range [0, 1]. If PGD attack is used, keep this value in the range [0, 0.3], PGD being a stronger attack ...') | ||
|
||
args = vars(parser.parse_args()) | ||
|
||
# Use GPU | ||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
# Load the model | ||
model = VGG16((1,32,32), batch_norm=True) | ||
model.to(device) | ||
|
||
transform=transforms.Compose([ | ||
transforms.Resize(32), | ||
transforms.ToTensor(), | ||
]) | ||
|
||
# Create a data directory | ||
if not os.path.exists('./data'): | ||
os.makedirs('./data') | ||
print('Created a data directory ...') | ||
|
||
# Load the dataset | ||
if args['dataset'] == 'mnist': | ||
test_dataset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) | ||
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) | ||
model.load_state_dict(torch.load('./models/vgg16_mnist_model.pth')) | ||
elif args['dataset'] == 'fashion_mnist': | ||
test_dataset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform) | ||
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) | ||
model.load_state_dict(torch.load('./models/vgg16_fashion-mnist_model.pth')) | ||
|
||
applyAttack(test_loader, model, args['epsilon'], args['attack']) | ||
|
||
|