-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgantts_models.py
211 lines (172 loc) · 7.93 KB
/
gantts_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# coding: utf-8
import torch
import numpy as np
from torch import nn
from torch.autograd import Variable
from nnmnkwii.autograd import unit_variance_mlpg
class AbstractModel(object):
"""Interface for VC and TTS models
"""
def include_parameter_generation(self):
"""Whether model includes parameter generation or not.
"""
return False
class In2OutHighwayNet(AbstractModel, nn.Module):
"""Input-to-Output Highway Networks for voice conversion.
Trying to replicate the model described in the following paper:
https://www.jstage.jst.go.jp/article/transinf/E100.D/8/E100.D_2017EDL8034/
.. note::
Since model architecture itself includes parameter generation, we cannot
simply use the model for multi-stream features (e.g., in TTS, acoustic
features often consist multiple features; mgc, f0, vuv and bap.)
"""
def __init__(self, in_dim=118, out_dim=118, static_dim=118 // 2,
num_hidden=3, hidden_dim=512, dropout=0.5):
super(In2OutHighwayNet, self).__init__()
self.static_dim = static_dim
self.relu = nn.LeakyReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
# Transform gate (can be deep?)
self.T = nn.Linear(static_dim, static_dim)
# Hidden layers
in_sizes = [in_dim] + [hidden_dim] * (num_hidden - 1)
out_sizes = [hidden_dim] * num_hidden
self.H = nn.ModuleList(
[nn.Linear(in_size, out_size) for (in_size, out_size)
in zip(in_sizes, out_sizes)])
self.last_linear = nn.Linear(hidden_dim, out_dim)
self.dropout = nn.Dropout(dropout)
def include_parameter_generation(self):
return True
def forward(self, x, R, lengths=None):
# Add batch axis
x = x.unsqueeze(0) if x.dim() == 2 else x
x_static = x[:, :, :self.static_dim]
# T(x)
Tx = self.sigmoid(self.T(x_static))
# G(x)
for layer in self.H:
x = self.dropout(self.relu(layer(x)))
x = self.last_linear(x)
Gx = unit_variance_mlpg(R, x)
# y^ = x + T(x) * G(x)
return x, x_static + Tx * Gx
class In2OutRNNHighwayNet(AbstractModel, nn.Module):
def __init__(self, in_dim=118, out_dim=118, static_dim=118 // 2,
num_hidden=3, hidden_dim=512, bidirectional=False, dropout=0.5):
super(In2OutRNNHighwayNet, self).__init__()
self.static_dim = static_dim
self.num_direction = 2 if bidirectional else 1
self.relu = nn.LeakyReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
# Transform gate (can be deep?)
self.T = nn.Linear(static_dim, static_dim)
# Recurrent hidden layers
self.lstm = nn.LSTM(in_dim, hidden_dim, num_hidden, batch_first=True,
bidirectional=bidirectional, dropout=dropout)
self.hidden2out = nn.Linear(hidden_dim * self.num_direction, out_dim)
self.dropout = nn.Dropout(dropout)
def include_parameter_generation(self):
return True
def forward(self, x, R, lengths=None):
# Add batch axis
x = x.unsqueeze(0) if x.dim() == 2 else x
x_static = x[:, :, :self.static_dim]
# T(x)
Tx = self.sigmoid(self.T(x_static))
# Pack padded sequence for CuDNN
if isinstance(lengths, Variable):
lengths = lengths.data.cpu().long().numpy()
if lengths is not None:
inputs = nn.utils.rnn.pack_padded_sequence(
x, lengths, batch_first=True)
else:
inputs = x
# G(x)
output, _ = self.lstm(inputs)
if lengths is not None:
output, _ = nn.utils.rnn.pad_packed_sequence(output, batch_first=True)
output = self.hidden2out(output)
Gx = unit_variance_mlpg(R, output)
# y^ = x + T(x) * G(x)
return x, x_static + Tx * Gx
class MLP(AbstractModel, nn.Module):
def __init__(self, in_dim=118, out_dim=1, num_hidden=2, hidden_dim=256,
dropout=0.5, last_sigmoid=True, bidirectional=None):
# bidirectional is dummy
super(MLP, self).__init__()
in_sizes = [in_dim] + [hidden_dim] * (num_hidden - 1)
out_sizes = [hidden_dim] * num_hidden
self.layers = nn.ModuleList(
[nn.Linear(in_size, out_size) for (in_size, out_size)
in zip(in_sizes, out_sizes)])
self.last_linear = nn.Linear(hidden_dim, out_dim)
self.relu = nn.LeakyReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
self.dropout = nn.Dropout(dropout)
self.last_sigmoid = last_sigmoid
def forward(self, x, lengths=None):
for layer in self.layers:
x = self.dropout(self.relu(layer(x)))
x = self.last_linear(x)
return self.sigmoid(x) if self.last_sigmoid else x
# needs https://github.com/taolei87/sru
class SRURNN(AbstractModel, nn.Module):
def __init__(self, in_dim=118, out_dim=118, num_hidden=2, hidden_dim=256,
bidirectional=False, dropout=0, last_sigmoid=False,
use_relu=0, rnn_dropout=0.0):
super(SRURNN, self).__init__()
from cuda_functional import SRU
self.num_direction = 2 if bidirectional else 1
self.gru = SRU(in_dim, hidden_dim, num_hidden,
bidirectional=bidirectional, dropout=dropout,
use_relu=use_relu, rnn_dropout=rnn_dropout)
self.hidden2out = nn.Linear(hidden_dim * self.num_direction, out_dim)
self.sigmoid = nn.Sigmoid()
self.last_sigmoid = last_sigmoid
def forward(self, sequence, lengths):
# Batch first -> Time first
sequence = sequence.transpose(0, 1)
output, _ = self.gru(sequence)
# Time first -> Batch first
output = output.transpose(0, 1)
output = self.hidden2out(output)
return self.sigmoid(output) if self.last_sigmoid else output
class GRURNN(AbstractModel, nn.Module):
def __init__(self, in_dim=118, out_dim=118, num_hidden=2, hidden_dim=256,
bidirectional=False, dropout=0, last_sigmoid=False):
super(GRURNN, self).__init__()
self.num_direction = 2 if bidirectional else 1
self.gru = nn.LSTM(in_dim, hidden_dim, num_hidden, batch_first=True,
bidirectional=bidirectional, dropout=dropout)
self.hidden2out = nn.Linear(hidden_dim * self.num_direction, out_dim)
self.sigmoid = nn.Sigmoid()
self.last_sigmoid = last_sigmoid
def forward(self, sequence, lengths):
if isinstance(lengths, Variable):
lengths = lengths.data.cpu().long().numpy()
sequence = nn.utils.rnn.pack_padded_sequence(
sequence, lengths, batch_first=True)
output, _ = self.gru(sequence)
output, _ = nn.utils.rnn.pad_packed_sequence(output, batch_first=True)
output = self.hidden2out(output)
return self.sigmoid(output) if self.last_sigmoid else output
class LSTMRNN(AbstractModel, nn.Module):
def __init__(self, in_dim=118, out_dim=118, num_hidden=2, hidden_dim=256,
bidirectional=False, dropout=0, last_sigmoid=False):
super(LSTMRNN, self).__init__()
self.num_direction = 2 if bidirectional else 1
self.lstm = nn.LSTM(in_dim, hidden_dim, num_hidden, batch_first=True,
bidirectional=bidirectional, dropout=dropout)
self.hidden2out = nn.Linear(hidden_dim * self.num_direction, out_dim)
self.sigmoid = nn.Sigmoid()
self.last_sigmoid = last_sigmoid
def forward(self, sequence, lengths):
if isinstance(lengths, Variable):
lengths = lengths.data.cpu().long().numpy()
sequence = nn.utils.rnn.pack_padded_sequence(
sequence, lengths, batch_first=True)
output, _ = self.lstm(sequence)
output, _ = nn.utils.rnn.pad_packed_sequence(output, batch_first=True)
output = self.hidden2out(output)
return self.sigmoid(output) if self.last_sigmoid else output