-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
51 lines (40 loc) · 1.22 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import pandas as pd
import numpy as np
from config import Config
from classifier import build_classifier
from train import train_model
import argparse
import yaml
def parse_args():
"""
Parse arguments:
- yaml: path to config file.
- model_save: path to save model.
- preds_save: path to save predictions.
"""
parser = argparse.ArgumentParser()
parser.add_argument("-y", "--yaml", type=str)
parser.add_argument("-m", "--model_save", type=str)
parser.add_argument("-p", "--preds_save", type=str)
return parser.parse_args()
def run(args):
"""
Run training program.
"""
# Load YAML
config_dict = yaml.load(open(args.yaml))
# Construct config object
config_obj = Config(**config_dict)
# Train model
model, preds_oof, preds_test = train_model(config_obj, is_wandb=False)
# Save test predictions
df_test = pd.read_csv(config_obj.PATH_TEST)
df_submission = pd.DataFrame({"id": df_test.id.values, "prediction": np.argmax(preds_test, axis = 1)})
df_submission.to_csv(args.preds_save, index = False)
# Save model
model.save(args.model_save)
if __name__ == '__main__':
# Parse arguments
args = parse_args()
# Run traning
run(args)