-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
executable file
·156 lines (132 loc) · 4.9 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from collections import defaultdict
import torch
import torch.nn as nn
import pytorch_lightning as pl
import clip
# relative appeal score comparator
class CLIPComparator(pl.LightningModule):
def __init__(self, opt):
super().__init__()
self.opt = opt
self.create_model()
def create_model(self):
clip_model, _ = clip.load('ViT-L/14', device='cpu')
self.pretrained_model = clip_model.visual
self.backbone = nn.Sequential(
nn.Linear(768, 1024),
nn.Dropout(0.2),
nn.Linear(1024, 128),
nn.Dropout(0.2),
)
self.head = nn.Sequential(
nn.Linear(128 * 2, 64),
nn.Dropout(0.1),
nn.Linear(64, 16),
nn.Linear(16, 1),
)
if self.opt.unfreeze_pretrained:
self.model_list = [self.pretrained_model, self.backbone, self.head]
else:
for param in self.pretrained_model.parameters():
param.requires_grad = False
self.pretrained_model.eval()
self.model_list = [self.backbone, self.head]
def configure_optimizers(self):
param_list = [list(m.parameters()) for m in self.model_list]
param_list = sum(param_list, [])
optimizer = torch.optim.AdamW(
filter(lambda p: p.requires_grad, param_list),
lr=self.opt.lr,
)
return optimizer
def forward(self, x):
return NotImplementedError()
def one_step(self, items, split):
feature_list = [self.backbone(self.pretrained_model(image.to(self.device))) for image in items['image_list']]
pred_label = self.head(torch.cat(feature_list, axis=-1))
gt_score_list = [gt_score.to(self.device).float().unsqueeze(-1)
for gt_score in items['image_score_list']]
gt_label = gt_score_list[0] - gt_score_list[1]
ret = {}
ret[f'{split}/pairwise_diff_loss'] = nn.L1Loss()(pred_label, gt_label).mean()
return ret
def training_step(self, batch, batch_idx):
split = 'train'
ret = self.one_step(batch, split)
self.log_dict(ret, sync_dist=True)
loss = sum([v for k, v in ret.items() if k.endswith('_loss')])
return loss
def validation_step(self, batch, batch_idx):
split = 'val'
ret = self.one_step(batch, split)
self.log_dict(ret, sync_dist=True)
return ret
def validation_epoch_end(self, outputs):
dict = defaultdict(list)
for o in outputs:
for k, v in o.items():
dict[k].append(v)
for k, v in dict.items():
print('validation_epoch_end', k, sum(v)/len(v))
# part 2
class CLIPScorer(pl.LightningModule):
def __init__(self, opt):
super().__init__()
self.opt = opt
self.create_model()
def create_model(self):
clip_model, _ = clip.load('ViT-L/14', device='cpu')
self.pretrained_model = clip_model.visual
for param in self.pretrained_model.parameters():
param.requires_grad = False
self.pretrained_model.eval()
self.backbone = nn.Sequential(
nn.Linear(768, 1024),
nn.Dropout(0.2),
nn.Linear(1024, 128),
nn.Dropout(0.2),
)
self.head = nn.Sequential(
nn.Linear(128, 64),
nn.Dropout(0.1),
nn.Linear(64, 16),
nn.Linear(16, 1),
)
self.model_list = [self.backbone, self.head]
def configure_optimizers(self):
param_list = [list(m.parameters()) for m in self.model_list]
param_list = sum(param_list, [])
optimizer = torch.optim.AdamW(
filter(lambda p: p.requires_grad, param_list),
lr=self.opt.lr,
)
return optimizer
def forward(self, x):
x = self.pretrained_model(x)
x = self.backbone(x)
x = self.head(x)
return x
def one_step(self, items, split):
pred_score = self(items['image'].to(self.device))
gt_score = items['image_score'].to(self.device).float().unsqueeze(-1)
ret = {}
ret[f'{split}/score_loss'] = nn.L1Loss()(pred_score, gt_score) # TODO: add image log
return ret
def training_step(self, batch, batch_idx):
split = 'train'
ret = self.one_step(batch, split)
self.log_dict(ret, sync_dist=True)
loss = sum([v for k, v in ret.items() if k.endswith('_loss')])
return loss
def validation_step(self, batch, batch_idx):
split = 'val'
ret = self.one_step(batch, split)
self.log_dict(ret, sync_dist=True)
return ret
def validation_epoch_end(self, outputs):
dict = defaultdict(list)
for o in outputs:
for k, v in o.items():
dict[k].append(v)
for k, v in dict.items():
print('validation_epoch_end', k, sum(v)/len(v))